

JuliaとActorを用いた 強化学習フレームワークの提案

中田秀基

産業技術総合研究所 {デジタルアーキテクチャ,人工知能}研究センター

概要

並列強化学習には複雑な並行制御が必要となり、 単純なFork-Join型の並列計算にはそぐわない。本 発表ではJulia言語を対象としてActorを導入し、そ の上に汎用性の高い教科学習フレームワークを構 築する。

本研究はJSPS科研費JP19K11994の助成を受けたものです

背景

- 強化学習には膨大な計算が必要
 - -並列計算が不可欠
 - -複雑な同期制御
 - -並列計算機の利用が不可欠
- Python
 - 機械学習でドミナント
 - 高速化は試みられているが低速
- Julia言語
 - -高速、機械学習分野で利用が広がる
- Julia 向けに分散フレームワークがほしい

目的と成果

- ●目的
 - -利用者が並列分散を意識せずにプログラミング可能 な強化学習フレームワークを提供

●成果

- –Julia 言語上にActor機構を提案(既発表)
- -Actor機構を用いた強化学習フレームワークを設計、 プロトタイプを実装
- -並列実行の効果をOpenAI gymで実験

NIRC

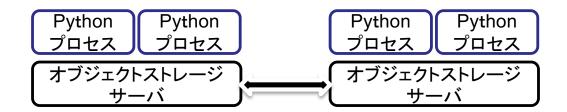
Python向け分散フレームワークRay

- Berkeley riselab のPython用並列 分散フレームワーク
 - 強化学習を対象
- Actorとして記述
 - remote をつけたクラスをリモートで Actorとして生成
- 同期はfuture

- import ray
 ray.init()

 @ray.remote
 class Counter(object):
 def __init__(self):
 self.n = 0
 def increment(self):
 self.n += 1
 return self.n

 c = Counter.remote()
 future = c.increment.remote()
 print(ray.get(future))
- ノード間通信は共有オブジェクトストレージを介する
- ノード内通信は共有メモリ



- 問題点:
 - Python GIL-スレッドがまともに動かない, そもそも低速
 - 共有オブジェクトストレージが比較的低速

Julia言語

- 高速なスクリプト「風」言語
 - -LLVMを用いたJITコンパイル
 - 実行時に実際に呼び出された型に特化したコードを動的に生成
 - -型を静的に指定することも可能
 - -Cに匹敵する(?)実行速度
- 3種類の並行/並列実行をサポート
 - コルーチン: libuv を使用。I/Oでブロックすると他のコルーチンに制御が移る
 - マルチスレッド: OSスレッドを使用
 - -マルチノード: SSH/MPIを利用した複数ノードでの起動をサポート

NIRC

Julia言語(2)

- CLOS的なOOP struct と Generic function で構成
 - クラスに属する「メソッド」がない

```
Python
class Shape:
 pass
class Circle(Shape):
 def __init__(self, radius):
    self.radius = radius
 def area(self):
    return self.radius * self.radius\
           * 3.14
class Rectangle(Shape):
  def init (self, width, height):
    self.width = width
    self.height = height
 def area(self):
    return self.width * self.height
print(Circle(10).area())
print(Rectangle(10,20).area())
```

```
Julia
abstract type Shape end
struct Circle <: Shape
    radius::Real
end
struct Rectangle <: Shape
    height::Real
    width:: Real
end
area(c::Circle) = c.radius * c.radius * pi
area(r::Rectangle) = r.height * r.width
area(Circle(5.0))
area(Rectangle(10,20))
```


AIRC

Juliaのマルチノード並列: Distributed.jl

- RPC 関数の実行ノードを指定
 - 引数は自動的に転送される
 - 呼び出しは即時にリターン
 - 返り値はfuture 同期機構
 - futureの値をfetchしようとした時点で、まだ計算が終 了していなければそこでブロック

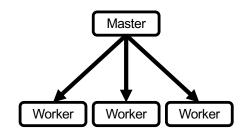
future = @spawnat 2 f(X)
value = fetch(future)

- リモートノード上のチャンネルのグローバルな参照
- 直接書き込み可能

●問題点

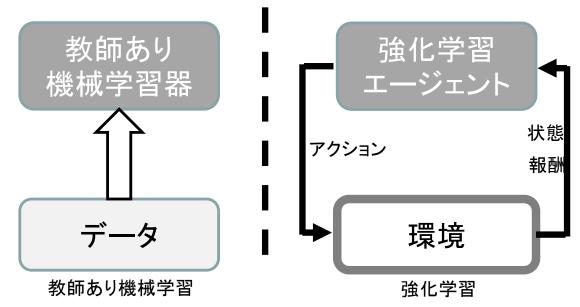
- リモートノード上の状態を管理する方法がない
- グローバル変数に書き込むことは可能

Actor



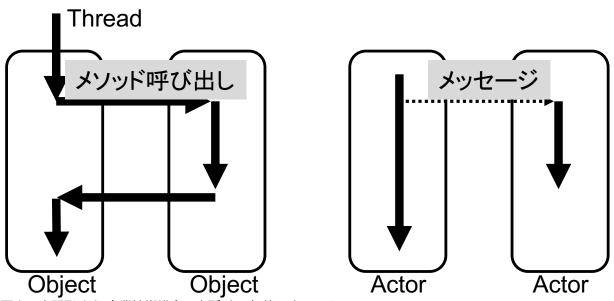
強化学習

- 教師あり、教師なしに並ぶ、機械学習の1ジャンル
- 報酬が遅延するため学習が困難
- 試行錯誤を通じてエージェントが環境に適応
 - -環境との相互作用が必要
 - -環境の更新が高価な場合も



Actor

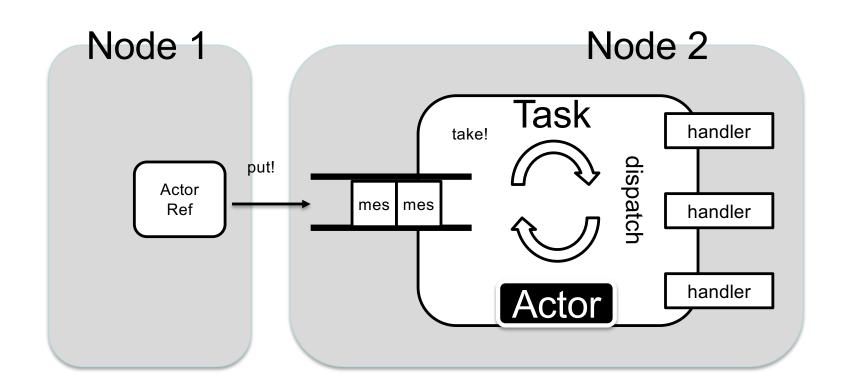
- 状態を持つ実行主体がメッセージを受信して処理
 - 状態と実行主体が1対1に対応
 - ●Object + Threadとは本質的に異なる
 - -メッセージの処理は一つずつ
 - -Actor内の状態更新には排他制御が不要
 - ◆メッセージキューの時点で逐次化されているため



国立研究開発法人 産業技術総合研究所 人工知能研究センター

提案Actor機構

- Juliaのリモートチャネル機構を利用
- リモートチャネル経由でメッセージを配送
- メッセージハンドラ関数をリモートノードで起動



Actorの記述方法の比較

● Juliaのマクロ機能を用いてハンドラ関数の記述を容易に

```
mutable struct Counter <: Actor
    v::Int64
end

@remote function add(c::Counter, v::Int64)
    c.v += v
end

@remote function sub(c::Counter, v::Int64)
    c.v -= v
end</pre>
```

```
counter = @startat 2 Counter(0)
f = add(counter, 10)
fetch(f)
```

```
import ray
ray.init()
@ray.remote
class Counter(object):
    def init (self):
        self.n = 0
    def add(self, v):
        self.n += v
        return self.n
    def sub(self, v):
        self.n -= v
        return self.n
c = Counter.remote()
future = c.add.remote(10)
print(ray.get(future))
```

Rayによる記述

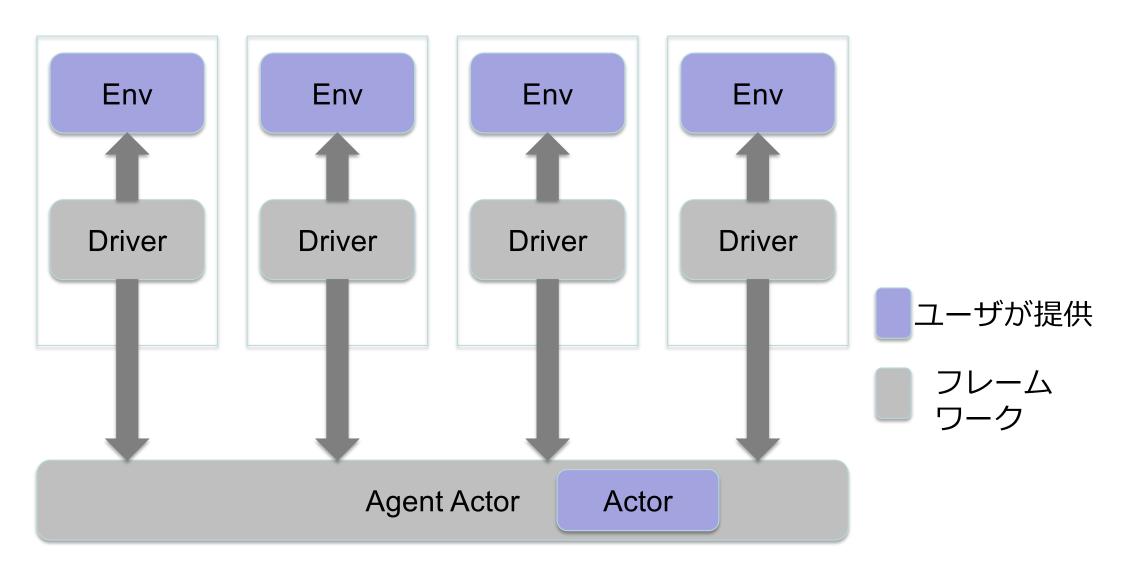
OpenAI Gym (Farama Gymnasium)

- さまざまな強化学習の課題を統一的なインターフェイスで提供
 - 2022年10月にOpenAIからFaramaに移管
- Env
 - step, reset, render, close
 - action_space, observation_space, reward_range,...
- Cart Pole (倒立振子)
 - カートに対して回転するように固定された棒を倒さないようにカートを 左右に動かす
 - Observation は 位置、速度、角度、角速度
 - Actionは右に行くか左に行くか

分散強化学習フレームワークの設計

- ●要請
 - -複数の「環境」を用いて1つのエージェントを訓練する
 - ●「環境」のシミュレーションが重いことを想定
 - -さまざまな強化学習アルゴリズム、評価環境をプラグ イン可能
 - -ユーザには分散環境を意識させない
 - ●通常の構造体と関数として記述させる
 - ●それを分散環境上にフレームワークが展開させる

フレームワークの概要



Agentのインターフェイス

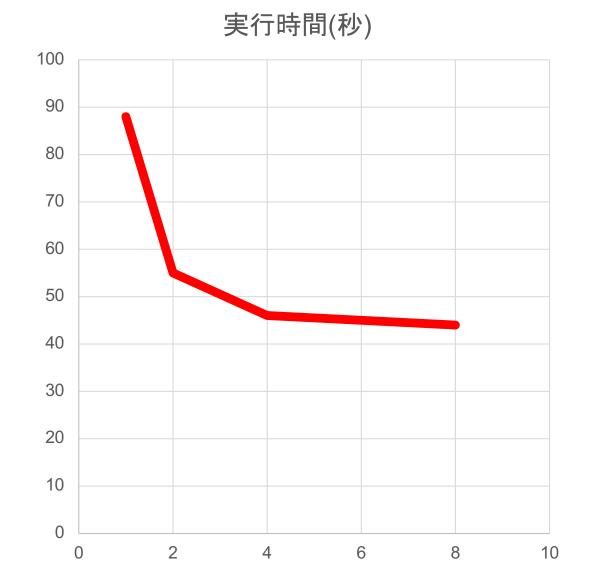
- get_action
 - 次のactionを決定
- update
 - 内部状態を報酬に応 じて更新

```
mutable struct Agent
end
function get_action(
    agent::Agent,
    observation::Vector{Float32},
    step::Int)
end
function update(
    agent::Agent,
    observation::Vector{Float32},
    action::Int,
    reward::Float32
    observation_next::Vector{Float32})
end
```


実験結果

- OpenAI Gym

 cart pole
 - -環境としては軽量
- M2 Macbook Proで評価
- 基本的なQ学習
- ●速度の向上は見られたが、 十分ではない
 - -環境が軽いため、並列実行 のメリットがない
 - -オーバヘッドが大きい
- C.f. シングルプロセスでは8秒



議論

- ●現状の設計ではフレームワークとエージェントの 分離が完全ではない
 - -報酬を決定するロジックがフレームワーク側にある
 - -エージェントのインターフェイスは要改善
- Interface(Java) もしくはTrait(Rust)のような機構がないと、安全なフレームワークの構築は困難
 - -Juliaには abstract type があるが、具象型での実装を強制できない
- マクロを使用することで、ファクトリ関数が不要

おわりに

- •まとめ
 - -分散強化学習フレームワークのプロトタイプを 設計した
- ●今後の課題
 - -さまざまな環境、強化学習アルゴリズムへの対応を通じて、インターフェイスを改善
- ●参考文献
 - -Ray: https://www.ray.io/
 - -Gymnasium: https://gymnasium.farama.org/