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Abstract 
MapReduce has been very successful in implementing 
large-scale data-intensive applications.  Because of its 
simple programming model, MapReduce has also begun 
being utilized as a programming tool for more general 
distributed and parallel HPC applications. 

However, its applicability is often limited due to relatively 
inefficient runtime performance and hence insufficient 
support for flexible workflows.  In particular, the 
performance problem is not negligible in iterative 
MapReduce applications. 

We implemented new MapReduce framework SSS based 
on distributed key-value store, that supports flexible 
workflows. Mappers and reducers read key-values only 
from its local storage enjoying high throughput and low 
latency.  

We evaluated SSS comparing with Hadoop using synthetic 
benchmark and real application. The result showed that 
SSS is faster than Hadoop, except for simple sequential  
read from disks. 
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Key Ideas 
Distributed KVS based 
No distributed file system underneath, reducing abstraction 
layer that significantly slows down iterative jobs composed 
of hundreds of MR iterations. We use single node KVSs 
and tie them up with hashing. 

Inside the Worker Server 
Worker server is implemented in data-flow fashion, so that 
it can enjoy modern multi-core architecture and hide 
latencies to read and write data from/to KVS.�

System Overview 
The system is composed of one master node and worker 
nodes. Worker node hosts KVS as storage and processing 
server that runs Mappers and Reducers.�

Owner Computes Rule 
Key spaces spans all the nodes. Mappers and Reducers 
only process the data resides in the same node. It means 
that no inter-node communication happens before the 
computation. The output of Mappers/Reducers might be 
written to other nodes.  
This simplifies scheduling a lot. In fact, SSS does not have 
so called scheduling module at all 

Key Spaces for workflow 
Keys are divided into several ‘spaces’. Mappers and 
reducers are responsible for processing each one 
designated space. Programmers can construct arbitrary 
workflow using spaces. 
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Key Spaces and Multi-Map implementation 
Key-value Storage does not have ‘space’ or multi-map concept. 
We implemented space ID as key prefix so that we can use 
‘range scan’ command to scan whole space. Multi-map is also 
handled with the key encoding. Server IDs and counters 
guarantee uniqueness of the Key, even though the User Key is 
the same. 
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Evaluation with synthetic benchmark�

Conclusion#and##
Future#work#
The new MapReduce framework SSS is proposed 
and showed better performance for benchmark 
suite and a real application.  
Our future work includes 
• More Evaluation with various Applications, such 

as graph processing 
• Supporting Continuous MapReduce 
• Publish SSS as Open source software 

Evaluation with PrefixSpan 
PrefixSpan is an algorithm for sequential pattern mining, which 
could be used, for example, to find frequently used idioms 
within a set of source code. MapReduce implementation of 
PrefixSpan repeats scanning through the whole dataset 
generating new dataset, until the dataset becomes empty. 
•  Input Data : 4M byte of source code. 
• Nodes: 16 
• Overhead for each iteration – job allocation. 

– Hadoop:11.3s, SSS: 0.4s , 300sec in Total.  
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Evaluation Environment 
Number of nodes: 16 + 1 (master) 
CPUs: Intel Xeon W5590 3.33GHz x 2 
Memory per node: 48GB 
Storage: Fusion-io ioDrive Duo 320GB 
NIC: Mellanox ConnectX-II 10G 

To investigate the characteristics of SSS, we designed a synthetic 
benchmark suite that is composed of read, write, and shuffle intensive 
jobs. They input/output 16GB/1TB data in total during read, write and 
shuffle phase, respectively.  
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