
SSS�a#MapReduce#Framework#based#on#
Distributed#Key9value#Store###!

Hidemoto!Nakada,!Hirotaka!Ogawa,!Tomohiro!Kudoh�

Abstract
MapReduce has been very successful in implementing
large-scale data-intensive applications. Because of its
simple programming model, MapReduce has also begun
being utilized as a programming tool for more general
distributed and parallel HPC applications.

However, its applicability is often limited due to relatively
inefficient runtime performance and hence insufficient
support for flexible workflows. In particular, the
performance problem is not negligible in iterative
MapReduce applications.

We implemented new MapReduce framework SSS based
on distributed key-value store, that supports flexible
workflows. Mappers and reducers read key-values only
from its local storage enjoying high throughput and low
latency.

We evaluated SSS comparing with Hadoop using synthetic
benchmark and real application. The result showed that
SSS is faster than Hadoop, except for simple sequential
read from disks.

!

Implementation�

Na5onal!Ins5tute!of!Advanced!Industrial!Science!and!Technology�

Key Ideas
Distributed KVS based
No distributed file system underneath, reducing abstraction
layer that significantly slows down iterative jobs composed
of hundreds of MR iterations. We use single node KVSs
and tie them up with hashing.

Inside the Worker Server
Worker server is implemented in data-flow fashion, so that
it can enjoy modern multi-core architecture and hide
latencies to read and write data from/to KVS.�

System Overview
The system is composed of one master node and worker
nodes. Worker node hosts KVS as storage and processing
server that runs Mappers and Reducers.�

Owner Computes Rule
Key spaces spans all the nodes. Mappers and Reducers
only process the data resides in the same node. It means
that no inter-node communication happens before the
computation. The output of Mappers/Reducers might be
written to other nodes.
This simplifies scheduling a lot. In fact, SSS does not have
so called scheduling module at all

Key Spaces for workflow
Keys are divided into several ‘spaces’. Mappers and
reducers are responsible for processing each one
designated space. Programmers can construct arbitrary
workflow using spaces.

Key!
Space� Map�

Reduce�
Key!
Space�

Key!
Space�

Key!
Space�

Reduce�
Key!
Space�

Key!
Space�

Key!
Space� Map�

Key!
Space� Map�

Key!
Space�Map�

Key Spaces and Multi-Map implementation
Key-value Storage does not have ‘space’ or multi-map concept.
We implemented space ID as key prefix so that we can use
‘range scan’ command to scan whole space. Multi-map is also
handled with the key encoding. Server IDs and counters
guarantee uniqueness of the Key, even though the User Key is
the same.

Space&ID&� User&Key� Value�

Key� Value�

0� ‘A’� Value�

0� ‘B’� Value�
1� ‘A’� Value�
1� ‘B’� Value�
1� ‘C’� Value�
1� ‘C’� Value�
2� ‘B’� Value�
2� ‘C’� Value�

Range&
Scan&with&
Space&ID&1�

Server&ID� counter�

1�

1�
2�
1�
1�
1�
3�
1�

0�

1�
1�
3�
2�
4�
3�
5�

MulF−&
map�

Booth!#917�

SSS"
Server�

Unit"KVS� Unit"KVS� Unit"KVS�

Distributed"KVS"

Client�

SSS"
Server�

SSS"
Server�

Worker""
Node�

Worker""
Node�

Worker""
Node�

Read� Mapper� Combiner� Write�

KVS� KVS�

Evaluation with synthetic benchmark�

Conclusion#and##
Future#work#
The new MapReduce framework SSS is proposed
and showed better performance for benchmark
suite and a real application.
Our future work includes
• More Evaluation with various Applications, such

as graph processing
• Supporting Continuous MapReduce
• Publish SSS as Open source software

Evaluation with PrefixSpan
PrefixSpan is an algorithm for sequential pattern mining, which
could be used, for example, to find frequently used idioms
within a set of source code. MapReduce implementation of
PrefixSpan repeats scanning through the whole dataset
generating new dataset, until the dataset becomes empty.
•  Input Data : 4M byte of source code.
• Nodes: 16
• Overhead for each iteration – job allocation.

– Hadoop:11.3s, SSS: 0.4s , 300sec in Total.

Acknowledgement
We!would!like!to!express!our!deepest!gra5tude!to!
Prof.!Katsuro!Inoue,!Prof.!Kenichi!Hagihara,!Prof.!
Masao!Okita,!and!Mr.!Yuki!Inoue!from!Osaka!
University,!for!providing!the!PrefixSpan!programs!
and!the!input!data.!
This!work!was!partly!funded!by!the!New!Energy!and!
IndusQ!trial!Technology!Development!Organiza5on!
(NEDO)!GreenQIT!project.�

 0

 5

 10

 15

 20

 25

 10 100 1000 10000 100000

El
ap

se
d

Ti
m

e[
s]

initialKeyCount

Hadoop-SSD
Hadoop-HDD

SSS-SSD
SSS-HDD

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 10 100 1000 10000 100000

El
ap

se
d

Ti
m

e[
s]

mapoutUniqueKeyCount

Hadoop-SSD
Hadoop-HDD

SSS-SSD
SSS-HDD

 0.01

 0.1

 1

 10

 100

 10 100 1000 10000 100000 1e+06

El
ap

se
d

Ti
m

e[
s]

mapoutKeyCount

Hadoop-SSD
Hadoop-SSD w/Combiner

Hadoop-HDD
Hadoop-HDD w/Combiner

SSS-SSD
SSS-SSD w/Combiner

SSS-HDD
SSS-HDD w/Combiner

ReadQIntensive� WriteQIntensive�ShuffleQIntensive�

Evaluation Environment
Number of nodes: 16 + 1 (master)
CPUs: Intel Xeon W5590 3.33GHz x 2
Memory per node: 48GB
Storage: Fusion-io ioDrive Duo 320GB
NIC: Mellanox ConnectX-II 10G

To investigate the characteristics of SSS, we designed a synthetic
benchmark suite that is composed of read, write, and shuffle intensive
jobs. They input/output 16GB/1TB data in total during read, write and
shuffle phase, respectively.

Total:!16G�

Total:!1T�

 0

 500

 1000

 1500

 2000

 2500

 100000 1e+06 1e+07

El
ap

se
d

Ti
m

e[
s]

initialKeyCount

Hadoop-SSD
Hadoop-HDD

SSS-SSD
SSS-HDD

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 100000 1e+06 1e+07

El
ap

se
d

Ti
m

e[
s]

mapoutUniqueKeyCount

Hadoop-SSD
Hadoop-HDD

SSS-SSD
SSS-HDD

 0

 500

 1000

 1500

 2000

 2500

 3000

 100000 1e+06 1e+07

El
ap

se
d

Ti
m

e[
s]

mapoutKeyCount

Hadoop-SSD
SSS-SSD
SSS-HDD

Hadoop-SSD w/Combiner
Hadoop-HDD w/Combiner

SSS-SSD w/Combiner
SSS-HDD w/Combiner

ReadQIntensive� WriteQIntensive�ShuffleQIntensive�

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 2 4 6 8 10 12 14 16

El
ap

se
d

Ti
m

e[
s]

Number of Nodes

Hadoop
SSS

 0

 1e+09

 2e+09

 3e+09

 4e+09

 5e+09

 6e+09

 7e+09

 8e+09

 0 5 10 15 20 25 30
 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

D
at

a
si

ze
 [b

yt
es

]

N
o.

 o
f R

ec
or

ds

Iteration

Data Size
No. of KVs

h>p://sss.apgrid.org�

Size!of!Dataset!
for!each!itera5on!

Na5onal!Ins5tute!of!Advanced!Industrial!Science!and!Technology�Booth!#917�

