
How Much Should We Invest for Network Facility:
Quantitative Analysis on Network ’Fatness’ and

Machine Learning Performance

Duo ZHANG, Mingxi LI
University of Tsukuba

Tsukuba, 305–8577, Japan
chou.2016@aist.go.jp

Yusuke TANIMURA, Hidemoto NAKADA
National Institute of

Advanced Industrial Science and Technology
Tsukuba, 305–8560, Japan

{yusuke.tanimura,hide-nakada}@aist.go.jp,

Abstract

Multi-node execution is becoming more and more popular for machine learning
because of it’s huge amount of computation. The question we are trying to answer
here is that, how should we design computer systems for deep learning, espe-
cially in terms of investment for the network. Traditional cluster based ’super-
computers’ require huge amount of investment on network switches since the net-
work ’fatness’ is quite important for the typical applications of super-computers.
Do the machine learning workloads share the characteristics with such kinds of
applications? To answer this questions, we quantitatively analyze the impact of
network fatness on several type of machine learning application types with sev-
eral network configurations. The results we obtained strongly implies that the
network fatness is not important for machine learning applications, and thus we
could safely reduce investment on network facilities.

1 Introduction

Cluster computers for machine learning are getting popular, along with recent rapid development
of deep learning frameworks that support distributed learning. Typical configuration of these clus-
ter with more than 100 nodes requires tree like hierarchical network structure since single switch
cannot handle that much nodes. However, simple hierarchical tree structure is notorious for perfor-
mance degradation for specific kinds of applications. This problem is widely recognized in the HPC
community.

Bisection bandwidth, which is defined as the bandwidth available between two partitions, is one
of the measure for network structure in the HPC community. Recently, a network structure called
Clos is widely employed as the large scale cluster network. Clos is designed to preserve the bisection
bandwidth with small number of network switches, however, it still cost much to keep high bisection
bandwidth. The question here is; how much bisection bandwidth do we really need for large scale
clusters for machine learning? Do we have to invest network switches as in the HPC community?

To answer this question, we conducted comprehensive simulation study. We tested 2 layered and
3 layered Clos network with several bisection bandwidth setting. For the target application, we
assumed data parallel machine learning, which is getting popular these days. In the data paral-
lel machine learning application, each machine learning module exchange gradients to proceed the
computation. We assumed 2 exchange methods; centralized server based method and direct ex-
change method. 1

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

1Part of the result shown in this paper is already published as [1]. This paper is a throughly rewritten version
of [2], which is non-peer reviewed article in Japanese domestic workshop.



WorkerWorker WorkerWorker

Parameter
Server parameter

1) parameter

2) Aggregation

3) Aggregated
parameter

1) parameter

Exchange via Parameter Server Direct Exchange

Figure 1: Gradient Exchange Methods.

node

node

node

node

node

node

node

node

SU
BC
LU
ST
ER

SU
BC
LU
ST
ER

node

node

node

node

node

node

node

node

SU
BC
LU
ST
ER

SU
BC
LU
ST
ER

Flat Butterfly Layered Butterfly

Figure 2: Butterfly Communication Diagram.

node

SubC
luster

node
node
node

node

SubC
luster

node
node
node

node
SubC

luster
node
node
node

node

SubC
luster

node
node
node

Packed Placem
ent

node

SubC
luster

node
node
node

node

SubC
luster

node
node
node

node

SubC
luster

node
node
node

node

SubC
luster

node
node
node

D
istributed Placem

ent

Figure 3: Parameter Server Placements.

In the next section we give the background of the research; data parallel machine learning systems,
the simulator we used, and the Clos network. Section 3 describes experimental setup and the result
of the experiments. Section 4 gives summary of the paper and the future work.

2 Background

2.1 Parameter Exchange Methods for Large Scale Machine Learning Systems

To parallelize machine learning systems, there are two methods; Data Parallel and Model Parallel.
While data parallel method simultaneously trains multiple machine learning models synchronizing
each other, model parallel parallelize inside a single machine learning model. While these two
methods are not exclusive each other and often used complementarily, we focus on data parallel in
this paper. Data parallel machine learning methods could be categorized into two types; synchronous
methods and asynchronous methods; synchronous means all the machine learning models are strictly
becomes same periodically, while asynchronous methods allow slight difference among the models.
This paper deals with synchronous methods only. To implement data parallel machine learning
systems, the are two methods; parameter server based method and direct communication method.

Parameter Server based Method Central server to exchange parameters are often called param-
eter server [3][4][5]. The left diagram in Figure 1 shows the parameter server based parameter
exchange. The workers (machine learning modules) send parameters (or gradients) to the parameter
server, the parameter server aggregates the parameter, and send back them to the workers. Often,
multiple parameter servers are used to shard the parameters and balance the load; each parameter
server is responsible for a subset of parameters.

There are two options for parameter server placement as shown in Figure 3. The left diagram shows
the ’packed’ placement where parameter servers are concentrated to one or few sub-clusters. The
right diagram shows the ’distributed’ placement where parameter servers are evenly distributed to all
the sub-clusters. Note that the parameter server node in each sub-cluster is selected in round-robin
fashion to avoid unnecessary network contention in the upper layer switches.

Direct Exchange Method It is possible to synchronize the models without using central server.
by repeating peer-to-peer exchange of parameters [6]. The left diagram in Figure 2 shows the com-

2



munication with 8 workers. Communication pattern likes this is known as butterfly communication,
which is widely used, for example, by the allreduce in MPI[7]. It can exchange information with all
the nodes within Log2N steps of communication where N is the number of workers.

Cluster Aware Direct Exchange Method It is possible to further optimize the butterfly method,
given the hierarchical structure. To reduce the inter sub-cluster communication, this method once
gather the information inside the sub-clusters to the head nodes of sub-clusters, then perform butter-
fly among the head nodes of the sub-clusers, and then distribute the exchanged information in each
cluster. We call this method layered butterfly. The right diagram in Figure 2 shows the layered
butterfly method.

This communication pattern requires log2n+ log2m+ log2n steps where n is the number of nodes
per sub-cluster and m is number of sub-clusters. Note that the flat butterfly shown above takes
log2N = log2nm = log2n+ log2m steps; therefore the layered method requires log2n more steps.

2.2 SimGrid: a Distributed Environment Simulator

SimGrid[8][9] is a simulation framework for distributed parallel applications. SimGrid is based
on a discrete event simulation; it does not perform any real computation / communication. It just
estimates times to perform computation / communication based on given parameters and records
events like‘ start / end of computation / communication’. The advantage of this type of simulator
is that the simulation cost is relatively small. Even with single node computer, SimGrid can handle
several thousands of communicating nodes.

To simulate a distributed system in SimGrid, users have to describe platform description and de-
ployment description in XML, and the simulation code in C or C++.

2.3 Cluster Networks Topologies

Bisection bandwidth and ’full’-bisection One of the widely used metrics to evaluate a network
is the Bisection bandwidth, which is defined as the following; if the network is bisected into two
partitions, the bisection bandwidth is the bandwidth available between the two partitions[10]. If the
bisection bandwidth of a network equals to the total bandwidth of one half of the nodes, we call the
network with ’full-bisection’ bandwidth. We introduce the term bisection ratio which is defined as
follows.

bisection ratio = bisection bandwidth/total bandwidth of one half (1)

The bisection ratio of ’full-bisection’ network is 1.0.

Clos Network Clos network is a class of network which is originally proposed by Charles Clos
in 1953, as a non-blocking network for telephone switching[11]. The core idea is to build a large
network using multi-stages of small cross-bar switches.

The term is now used to refer a class of fat-tree network[12], which could be considered as a folded
version of the original Clos network. We tested 2 types of Clos networks; 2-layered and 3-layered
one.

2-layered Clos is relatively simple[13], as shown in Figure 4. Multiple sub-clusters connected with
local-switches are connected by multiple upper layer (right in the figure) root switches to mitigate
congestion and improve the bisection bandwidth.

In this configuration, number of ports of the switches determines the maximum number of sub-
clusters we can have. With n-node switch, n sub-clusters are the maximum, since all the higher
layer switches have to be connected with the all the lower layer switches. Figure 4 shows the
configuration with 8-ports switches. The left diagram shows the ’full-bisection’ configuration with
8 port switches and 32 nodes in total. We can configure networks with less bisection bandwidth by
reducing the number of upper layer switches.

3-layered Clos is rather complicated[12], as shown in Figure 5. The network is composed of multi-
ple ’pods’ which has local 2-layered network structure in them. The pods are connected by multiple
root nodes just like 2-layered case. Number of switch ports determines the network structure. Figure
5 shows 3-layered Clos networks with 4 ports switches.

3



node

SubC
luster

node
node
node

SW

node

SubC
luster

node
node
node

SW

node

SubC
luster

node
node
node

SW

node

SubC
luster

node
node
node

SW

node

SubC
luster

node
node
node

SW

node

SubC
luster

node
node
node

SW

node

SubC
luster

node
node
node

SW

node

SubC
luster

node
node
node

SW

SW

SW

SW

SW

node

SubC
luster

node
node
node

SW

node

SubC
luster

node
node
node

SW

node

SubC
luster

node
node
node

SW

node

SubC
luster

node
node
node

SW

node

SubC
luster

node
node
node

SW

node

SubC
luster

node
node
node

SW

node

SubC
luster

node
node
node

SW

node

SubC
luster

node
node
node

SW

SW

SW

Bisection ratio = 1 Bisection ratio = 2

Figure 4: 2 Layered-Clos Network
with 8 Port Switches.

node
node SW SW

node
node SW SWPod

node
node SW SW

node
node SW SWPod

node
node SW SW

node
node SW SWPod

node
node SW SW

node
node SW SWPod SW

SW

SW

SW node
node SW

node
node SW SWPod

node
node SW

node
node SW SWPod

node
node SW

node
node SW SWPod

node
node SW

node
node SW SWPod SW

SW

Bisection ratio = 2Bisection ratio = 1

Figure 5: 3 Layered-Clos Network with 4 Port
Switches.

Table 1: Comparison of the 2-layered and 3layered Clos networks

Name #Nodes #Switches #Links

2layered-Clos k2/2 k/2(2 + r) k2/2(1 + r)
3layered-Clos k3/4 k2/4(2 + 3r) k3/4(1 + 2r)

With k ports switches, we can have k pods. There are k pods, each pod consists of (k/2)2 servers
and 2 layers of k/2 k-port switches. Each edge switch connects to k/2 servers and k/2 aggregation
switches. Each aggregation switch connects to k/2 edge and k/2 root switches. There are (k/2)2

k-port root switches, each root switch has one port connected to each of k pods. The i th port of any
root switch is connected to pod i such that consecutive ports in the aggregation layer of each pod
switch are connected to root switches on (k/2) strides. In general, a 3-layered Clos network built
with k-port switches supports k3/4 hosts.

Comparison of the networks Table 1 shows the comparison of the two networks. r denotes the
bisection ratio. Figure 6 shows the required number of switches to construct a network with number
of nodes specified in x-axis for bisection ratio 1, 1/2, 1/4, and 1/8. Note that number of switches are
normalized with the 2×2 switch equivalent number; assuming k port switches could be implemented
by (k/2)2 2×2 cross bar switches

The network resource requirement for 3-layered Clos network is smaller than 2-layered one. 3-
layered Clos is considered to be better topology in terms of resource requirement.

0 200 400 600 800 1000
Number of Nodes

0

10000

20000

30000

40000

N
um

be
r o

f S
w

itc
he

s

2-layered : r = 1 
2-layered : r = 1/2
2-layered :r = 1/4
3-layered : r = 1
3-layered : r = 1/2
3-layered : r = 1/4
3-layered : r = 1/8

Figure 6: Number of Switches for Number of Nodes.

4



0.0 0.2 0.4 0.6 0.8 1.0
Bisection Ratio

0

20

40

60

80

100

Ti
m

e 
[s

]

BF, Flat
BF, Layered
PS, Distributed
PS, Packed

Figure 7: 2-Layered, 2048 nodes, 4GB/s.

0.0 0.2 0.4 0.6 0.8 1.0
Bisection Ratio

0

20

40

60

80

100

Ti
m

e 
[s

]

BF, Flat
BF, Layered
PS, Distributed
PS, Packed

Figure 8: 3-Layered, 1024 nodes, 4GB/s..

3 Experiments

We performed experiments using simulation with the network structure and the parameter exchange
methods described below, with SimGrid. We measured the time to perform one gradients exchange,
no computation are took into account so that we can focus on the communication cost only. Time
for aggregating the gradient are also omitted in the simulation, since the time are relatively small
and could be ignored.

3.1 Network Setup

We have setup clusters with the two network topologies; 128, 512, and 2048 nodes for 2-layered
Clos network, and 256 and 1024 nodes for 3-layered Clos network. We set the bandwidth of links as
4GBytes/s (assuming 40G Infiniband with TCP overhead), and 1GBytes/s (assuming 10G Ethernet
with TCP overhead), and the switch latency as 0.2 µs and 1 µs .

3.2 Parameter Exchange Methods

We test one parameter server based method and two butterfly based methods. For the parameter
server based method, we assume 1/8 of whole nodes in the cluster are used for parameter servers
while the others are used for workers. We tested two placement strategy for parameter server based
method. One is ’packed’ and the other is ’distributed’, shown in Figure 3.

For the butterfly based methods, all the nodes are used for workers. 2 We test the simple flat-butterfly
method with the layered-butterfly method.

In summary, we test four settings; namely, parameter server with packed placement (PS, packed)
and distributed placement (PS, distributed) , flat butterfly (BF, flat) , and layered butterfly (BF,
layered.

3.3 Results and Discussion

Due to space limitation we show some results only here. Note that the results are quite consistent
regardless of the size of cluster. Figure 7 shows the result with 2-layered Clos network with 2048
nodes Figure 8 shows the result with 3-layered Clos network with 1024 nodes. The results are for
4GBytes/s bandwidth and 0.2 µs switch latency. The x-axis shows the bisection ratio. The y-axis
shows the execution time to perform one gradient exchange.

From this result, it can be seen that the method using the parameter server is inferior to the butterfly
network based method in basic performance. This is because the connections to the parameter
servers becomes the bottleneck.

2Actually, the number of worker nodes is different between butterfly network based method and parameter
server based method. Number of worker nodes of parameter server based method is always 1/8 nodes fewer.
However, even if the butterfly network based method reduces n nodes, the execution time is expected to be the
same.

5



0.0 0.2 0.4 0.6 0.8 1.0
Bisection Ratio

0

100

200

300

400

Ti
m

e 
[s

]

BF, Flat
BF, Layered
PS, Distributed
PS, Packed

Figure 9: 3-Layered, 1024 nodes, 1GB/s.

0.0 0.2 0.4 0.6 0.8 1.0
Bisection Ratio

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Ti
m

e 
[s

]

BF, Flat
BF, Layered
PS, Distributed
PS, Packed

Figure 10: 3-Layered, 1024 nodes, enlarged.

Parameter server method with packed placement setting exhibit significant performance drops as
the bisection ratio decreases. On the other hand, with distributed placement setting, the parameter
server method is hardly affected by the reduction of the bisection bandwidth. This is because of the
network traffic is smoothed throughout the cluster by distributing the parameter server nodes.

Butterfly network based method is faster than parameter server based method, in general. The
flat butterfly method tends to be affected by the reduced bisection bandwidth, since it performs
inter cluster communication heavily. In contrast, the layered butterfly method is not affected by the
bisection bandwidth at all. This result implies that with this method, we do not have to invest in the
bisection bandwidth.

While it is difficult to directly compare the Clos and Fattree networks, since it is very difficult to
setup them with same nodes, they share same trend in results, as shown in Figure 8 and Figure 7.
Given that the Clos requires less network resources, we could conclude that Clos network is more
suitable for this particular application.

Figure 9 shows the result with 1GBytes/s network, instead of 4GBytes/s network in Figure 8. Com-
paring Figure 9 and Figure 8, we could see that network bandwidth linearly affect the gradient
exchange speed. This implies that investing faster network technology will be fruitful.

Figure 10 shows a close up of Figure 8. As shown in the figure, the flat butterfly is slightly faster
than layered butterfly with full-bisection bandwidth. This is because the flat butterfly requires fewer
steps than the layered one, as discussed in 2.1.

4 Conclusion

We have quantitatively evaluated the performance of several parameter exchange method for two
network topologies; namely, 2-layered and 3-layered Clos networks, with several bisection-ratio
to investigate the proper investment on network for distributed machine learning applications. We
have revealed that, 1) Bisection ratio affects some of the parameter exchange methods, but cluster
aware direct exchange method does not get affected, 2) Network speed linearly affect the parameter
exchange speed, 3) Parameter server based methods are substantially slower than the direct exchange
methods, 4) Cluster aware direct exchange method (layered butterfly) outperforms naive exchange
method (flat butterfly), except for the case with full-bisection bandwidth.

We conclude that if we employ proper parameter exchange method, we could substantially reduce
the investment on the network.

Our future work include the followings:

• Investigate asynchronous gradient exchange setting which will require less network re-
sources.

• Confirm the simulation result with real settings.

6



Acknowledgement

This paper is based on results obtained from a project commissioned by the New Energy and Indus-
trial Technology Development Organization (NEDO). This work was supported by JSPS KAKENHI
Grant Number JP16K00116.

References
[1] Mingxi LI and Yusuke TANIMURA and Hidemoto NAKADA . A quantitative analysis on

required network bandwidth for large-scale parallel machine learning. In International Con-
ference on Machine Learning, Optimization and Big Data, September 2017.

[2] Duo Zhang, Mingxi Li, Yusuke Tanimura, and Hidemoto Nakada. A study on network structure
and parameter exchange method in large-scale cluster for machine learning. In IEICE technical
report, vol. 117, no. 153, CPSY2017-29, pages 140–150, 2017.

[3] Parameter server: http://parameterserver.org/. Accessed: 2015-06-20.

[4] Mu Li, David G. Andersen, Jun Woo Park, Alexander J. Smola, Amr Ahmed, Vanja Josifovski,
James Long, Eugene J. Shekita, and Bor-Yiing Su. Scaling distributed machine learning with
the parameter server. In 11th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 14), pages 583–598, Broomfield, CO, October 2014. USENIX Association.

[5] Jeffrey Dean, Greg S. Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Quoc V. Le, Mark Z.
Mao, Marc’Aurelio Ranzato, Andrew Senior, Paul Tucker, Ke Yang, and Andrew Y. Ng. Large
scale distributed deep networks. In NIPS 2012: Neural Information Processing Systems, 2012.

[6] Huasha Zhao and John Canny. Butterfly mixing: Accelerating incremental-update algorithms
on clusters. In Proceedings of the 2013 SIAM International Conference on Data Mining, 2013.

[7] Rajeev Thakur and W. D. Gropp. Improving the performance of mpi collective communi-
cation on switched networks. Technical Report ANL/MCS-P1007-1102, Argonne National
Laboratory, 11/2002 2002.

[8] Henri Casanova, Arnaud Giersch, Arnaud Legrand, Martin Quinson, and Frédéric Suter. Ver-
satile, scalable, and accurate simulation of distributed applications and platforms. Journal of
Parallel and Distributed Computing, 74(10):2899–2917, June 2014.

[9] Simgrid: Versatile simulation of distributed systems: http://simgrid.gforge.inria.fr/
index.php. Accessed: 2016-07-11.

[10] John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative Approach
(Third ed.). Morgan Kaufmann Publishers, Inc., 2003.

[11] Charles Clos. A study of non-blocking switching networks. Bell System Technical Journal,
32(2):406—-424, 1953.

[12] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. A scalable, commodity data
center network architecture. In Proceedings of the ACM SIGCOMM 2008 Conference on Data
Communication, SIGCOMM ’08, pages 63–74, New York, NY, USA, 2008. ACM.

[13] Charles E. Leiserson. Fat-trees: universal networks for hardware-efficient supercomputing.
IEEE Transactions on Computers, 34(10):892–901, Oct. 1985.

7

http://parameterserver.org/
http://simgrid.gforge.inria.fr/index.php
http://simgrid.gforge.inria.fr/index.php

	Introduction
	Background
	Parameter Exchange Methods for Large Scale Machine Learning Systems
	SimGrid: a Distributed Environment Simulator
	Cluster Networks Topologies

	Experiments
	Network Setup
	Parameter Exchange Methods
	Results and Discussion

	Conclusion

