
Parallelization of Phylogenetic Tree Inference using
Grid Technologies

Yo Yamamoto1, Hidemoto Nakada1,2, Hidetoshi Shimodaira1,
Satoshi Matsuoka1,3

1 Department of Mathematical and Computing Sciences, Tokyo Institute of Technology
2-12-1 Oo-okayama, Meguro-ku, Tokyo, Japan 152-8550

yamamoto@matsulab.is.titech.ac.jp, hide-nakada@aist.go.jp,
shimo@is.titech.ac.jp, matsu@is.titech.ac.jp

http://www.is.titech.ac.jp
 2 National Institute of Advanced Industrial Science and Technology
Grid Technology Research Center, Central2, 1-1-1 Umezono, Tsukuba, Ibaraki

305-8568 Japan
3 National Institute of Informatics

2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, Japan 101-8430

Abstract. The maximum likelihood method is considered as one of the most
reliable methods for phylogenetic tree inference. However, as the number of
species increases, the approach quickly loses its applicability due to explosive
exponential number of trees that need to be considered. An earlier work by one
of the authors [3] demonstrated that, by decomposing the trees into fragments
called splits, and calculating the individual likelihood of each (small) split and
combining them would result in a very close approximation of the true
maximum likelihood value, as well as achieving significant reduction in
computational cost. However, the cost was still significant for a practical
number of species that need to be considered. To solve this problem, we further
extend the algorithm so that it could be effectively parallelized in a Grid
environment using Grid middleware such as Ninf and Jojo, and also applied
combinatorial optimization techniques. Combined, we achieved over 64 times
speedup over our previous results in a testbed of 16 nodes, with favorable
speedup characteristics.

1 Introduction

All form of life today on earth originated from a common biological ancestor; so,
any species may be placed as some leaf node of some gigantic phylogenetic tree. One
valuable endeavor is to infer a phylogenetic tree given a set of various species to
determine how the individual species have exactly evolved and relate to each other
during the course of evolution, in particular when a particular branching has occurred
given a pair of different species. Such research is quite important to reveal the
mechanism of how evolutions have and will occur for various life forms.

Traditional biology mostly inferred the phylogenetic relationships amongst the
species by their external features. However, such comparisons often tend to lack
precision and objectiveness, and in fact sometimes lead to inconsistent results. With
the discovery of DNA, it is now becoming possible to infer phylogenetic trees using
mathematical models of evolution constructed on DNA sequences. However, in
practice straightforward inference algorithms built on such models have substantial
computational complexity, and have remained applicable only to very small problems.

Based on our past work that aimed to reduce the complexity in tree inference
without losing precision [3], we further improve the algorithm by applying both
numerical optimization and parallelization techniques on a cluster/Grid environment.,
using task parallel Grid middleware Ninf[2] and Jojo[1]. We obtained nearly 64-fold
speedup over our earlier results as a combined effect of both on a small cluster test
environment of 16 nodes, allowing us to scale the problem significantly.

2. Inferring Phylogenetic Trees – The Complexity Problem

A sample phylogenetic tree is illustrated in Figure 1. The maximum likelihood
method that will compute such a tree will compute the likelihood value of kx at a

locus k, and consider the product of all such likelihood ∏k kxL)(as the likelihood

value induced from the particular DNA sequences.)(kxL will be obtained typically
via a non-linear optimization process involving considerable iterations, and as will be
computationally non-trivial, as shown in Table 2. After obtaining all the likelihood
values of candidate phylogenetic trees, we consider the one with the largest likelihood
value to be most trustworthy. However, the number of phylogenetic trees is quite
large in itself, or more precisely, for n specifies the number of trees is

)!2())!3(2/())!52((3 nOnn nn =−− − . As a result, computing the likelihood
values for all possible candidate trees becomes quickly impractical, even for a
relatively small n.

To cope with such massive computational complexity, one of the authors proposed
an approximate method for computing the likelihood value of a given tree. We call a
branch of a phylogenetic tree a split, and given n species we can divide a given
phylogenetic tree into)3(−n set of splits. We then compute the likelihood values
of given splits using the maximum likelihood method, and derive an approximate
value of the likelihood value using matrix manipulations. This method has
considerable computational complexity advantage without losing much precision.
Since the total number of possible splits is)2()1(2 1 nn On =+−− , we can
significantly reduce the overall computational cost. However, the number of
phylogenetic trees is still significant, and this method, although a definite
improvement, still was too expensive of realistic values of n.

GC A THuman
Chimp
Seal
Cow
Rabbit
Mouse
Opossum

C ACC CCTACTCCTCATTGTACCCATTCTAATCGCAATGG
C A TC ACC CCTACTCCTCATTGTACCCAT CTAATCGCAAT GA C A

A TA C TCTC CT CA TT T CC AT CT TCGC T GA ATT TA A A A C A T CC CG
A TA C T T CTA TT T CC AT CT T GC T GA ATT A A A CGC T AA A T C C AT G
AA C T T TA T T CC T CT T GC T GA ATT A CA TT AC CC TT CC A TG A T A A
AA T T T T CC T CT T GC T GA ATT A CT C C ATC AACAC CC G C CA T AA C
A T T T CC T CT T GC T GA ATT T A A CA A GTCT AT T TATA TA TA C CC A

・・・

・・・

・・・

・・・

・・・

・・・

・・・

1x 7x 20x

Rabbit Cow
Seal Human

Chimp

（ (Common Ancestor)

Opossum

Mouse

Fig. 1. An Example Phylogenetic Tree

Fig. 2. DNA Sequence, and computing of the likelihood values.

3. Overview of our Proposed Improvements to the Split Method

Our improvements over the previous proposal are twofold. One is to apply
combinatorial optimization techniques to reduce the search space for the trees.
Another is to parallelize the search effectively over the Grid using appropriate task-
parallel Grid middleware, Ninf[2] and Jojo[1]. The resulting program was shown to
execute efficiently and with significant speedup, even for a relatively small number of
nodes on a small-scale cluster. Figure 3 shows the overall workflow; here, we see that
the program largely consists of two phases, the first phase being “computing the
likelihood value of each split using the maximum likelihood method”, and the second
phase being the “combining the splits and searching the optimal results using
combinatorial optimization techniques and their parallelization”. The former will

perform parameter-sweep parallelization of likelihood values of each possible split,
either sequentially or in parallel on the Grid, and output the results in files for the
second phase. The second phase in turn will either directly obtain the likelihood
values of all combinations of splits, or use combinatorial optimization techniques
such as branch-and bound or simulated annealing, and obtain the optimal likelihood
value from the “more likely” candidates, again possibly in parallel on the Grid.

For both phases, we parallelize the computation using master-worker scheme, and
implement the former using the Ninf GridRPC system, whereas for the latter we
perform further hierarchical master-worker parallelization using a Java Grid
parallelization system Jojo. There are various reasons we employ two different Grid
middleware systems; the primary reason for using Ninf GridRPC is that, it is easy to
integrate existing maximum likelihood numerical packages, while the reason we
employ Jojo for the second phase is that, the latter involves hierarchical
parallelization, in particular branch-and-bound computation. From a pure Grid
middleware research perspective it is also interesting to investigate how the two
different middleware will interoperate smoothly on the Grid.

S
plit D

ecom
position of P

hylogenetic Tree

Sequential Computation of
Maximum Likelihood Value

Sequential Computation of
Maximum Likelihood Value
of Splits

Reading the Likelihood
Value from the File

C
reating a List of Likelihood V

alues of S
plits

Initialization

Parallelization of
Maximum
Likelihood

Parallel Computation of
Maximum Likelihood Value
of Splits

Ninf

Finalization

Parallel Likelihood
Value Combing Splits

Parallel Simulated Annealing
Combining Splits

Parallel Branch-and-Bound
Combining Splits Jojo

Jojo

Jojo

Ninf

Computing Maximum
Likelihood Value

Searching and Combining Splits into
Phylogenetic Trees

Simulated Annealing
Combining Splits

Branch-and-Bound Combining
Splits

Sequential Computation of
Likelihood Values by
Combining Splits

Fig. 3. The Overall Workflow of Deriving the Phylogenetic Tree with Maximum Likelihood

Value.

4. Optimizing Phylogenetic Tree Inference

In order to reduce the number of candidate phylogenetic trees, we employ
combinatorial optimization techniques.

4.1. Using Branch-and-Bound

Since each phylogenetic tree corresponds to)3(−n sets of splits, we obtain a
new tree by combining a split onto a star-shaped phylogenetic tree one by one, as
shown in Figure 4. Since there are multiple ways how split can be combined at each
stage, the search space branches out into a search tree as in Figure 4, with the leaves
being the candidate phylogenetic tree. We then apply branch-and-bound technique
onto this search tree, allowing us to prune the search space significantly with an
appropriate bounds function.

1
2

3 4

5 Combine a Split
1

2

3 4

5

(1,2,3/4,5)

1

32 4

5
Combine a Split

(1,2/3,4,5)

Star-Shaped
Phylogenetic
Tree

1

23 4

5

(1,3/2,4,5)

1
2

4 3

5

(1,2,4/3,5)

1

42 3

5

(1,2/3,4,5)

1

24 3

5
(1,4/2,3,5)

1
2

5 3

4

(1,2,5/3,4)

・
・
・

・
・
・

Fig. 4. Formulating a Search Tree of Combining Splits

In order to prune the branches, we compute the upper bound of the likelihood

value for each node in the tree, and compare the value against the current solution; if
the upper bound is greater, we continue the search by expanding the node; otherwise,
we prune the branch of the search tree under that node.

As an upper bound, we employ the combined likelihood value where we combine
all possible splits onto that (pair of splits) node.

4.2. Using Simulated Annealing

For simulated annealing, we obtain the neighboring solutions based on splits, as
we see in Figure 5. Firstly, from the set of splits that signifies the current solution, we
arbitrarily remove one of the splits. Then, of the three possible splits that could be
combined with the current set, we remove the split that would result in idempotent
return to the original before split removal. Then, from the remaining two we pick one
at random, and combine with the set of splits, deriving the neighboring solutions. The
“cooling” function we employed was, given the cooling parameter α we simply
perform exponential degradation currentnext TT α=)10(<<< α .

1
2
3
4

5
6
7

8

12
3
4
5 6

8

7
1

7 8

2
3
4

6

5

12
5
6
7 8

4

3
34

5
6

78
2

1

8

12
5
6
7 4

3

4
5
6

78
3

1
2

3
5
6

78
4

1
2

1 2 3 4 5 67 8

1 2 4 3 5 67 8

1 2 3 4 5 67 8
1 2 3 4 5 67 8

Candidate
Splits

Candidate
Solutions

Current
Solution

Neighbor
Solutions

1 2 3 4 5 67 8

Fig. 5. Creating Neighboring Solutions and Candidates in the Simulated Annealing Scheme

5. Parallelizing Phylogenetic Tree Inference on the Grid

5.1. Using Simulated Annealing

The computation in the first phase continues in a simple master worker style. The
master first creates a pool of phylogenetic trees or splits subject to further
computation, and sends them as jobs off to the worker nodes on the Grid one by one.
The worker computes the maximum likelihood and returns the value; the worker
aggregates the returned result and resends another job to an idle worker, until the pool
of trees and/or splits is exhausted.

5.2. Parallelizing the Split Method Directly

The second phase can also be parallelized in a straightforward fashion in a similar
manner using master-worker style computation. This time the master sends the
phylogenetic tree and the corresponding split pair to the workers. The workers in turn
computes the approximate likelihood values of the combined phylogenetic tree based
on the likelihood values obtained in phase one, and returns the result to the master,
The master keeps track of the process, continuing until all the phylogenetic trees that
can be generated are covered, and picks the tree with the largest likelihood value as
the result.

5.3. Efficient Parallelization of the Split Method using Branch-and-Bound

With branch-and-bound, parallelization is performed somewhat differently for
phase two. However, a common problem with parallelizing branch-and-bound is that,
there could be considerable load imbalance depending on how the search tree is
divided, and moreover, some computation may go to waste if the bound value of
some branch turns out to prune a computation ongoing on some other processor. The
shape and the depth of subtrees of a search tree may greatly differ amongst one
another, and whether or not a search should be conducted on a subtree is runtime
dependent. As such, naïve master-worker subdivision of (sub) search tree may turn
out to be quite inefficient.

In order to avoid this problem, we set a limit on the number of “problems” (i.e.,
computing the likelihood value of each split) individual workers will compute for
each subtree. The master maintains a pool of problems, and distributes each one by
one to the workers. The worker then proceeds to solve the problems in the manner
similar to Section 5.2. If the number of problems that the worker has solved exceeds
some threshold value, the problem is returned to the master. The master in turn re-
adds the problem to the pool for subsequent re-allocation to some worker.

5.4. Parallelizing Simulated Annealing

For parallelizing simulated annealing, we employed the replica exchange method
as outlined below. Each worker maintains an independent simulated annealing
process, each with a different temperature parameter. At some periodic exchange
interval the worker sends the current likelihood value to the master, and requests for
exchanging the temperature value. Let us label this worker i. When the master
receives this request, the master notifies worker j, where j < i and holds the maximum
temperature value, that an exchange request has been made. The worker j in turn
judges whether the exchange of the temperature should take place according to the
temperature and the likelihood value it has received. If it decides to accept the
exchange it performs the temperature exchange and notifies the master its previous
temperature and the current likelihood value; the master then notifies worker i that the
exchange was successful, the worker i performs its own exchange internally, and the
entire exchange process completes. Otherwise, if the worker j decides to deny the
request, it notifies the master who in turn notifies worker i that the exchange was
unsuccessful. Irrespective of whether the exchange was successful or not, the workers
continue with their search until the next exchange period is encountered.

6. Evaluation of Our Proposed Scheme

6.1. Evaluation Criteria and the Target Problem

As the evaluation criteria, we employed and measured the followings:

 Evaluating the original approximation algorithm using splits: We initially
investigate the effect of our original scheme of deriving the approximate
likelihood value by combining splits to form the phylogenetic tree, by comparing
its precision and compute cost

 Evaluating the reduction of the search space using combinatorial
optimization techniques: We next evaluate how much the search space has been
reduced by employing branch-and-bound and simulated annealing techniques

 Evaluating the parallelization efficiency and scalability: Although in theory
master-worker computation could approach near-perfect speedup, in reality we
may observe loss in efficiency as we scale the problem larger due to various
factors including communication overhead between the master and the worker, as
well as the load of the master increasing and becoming the sequential bottleneck.
The metrics we employ are firstly the speedup value due to parallelization, i.e.,

parallel

serial

T
T

Speedup =

and in particular we measure the parallelization overhead as when we have
just one master and one worker. We also compute the scalability as:

sworN

SpeedupyScalabilit
ker

=

where Nworkers is the total number of workers.
We employed paml[4] as the program that computes the likelihood value given a

particular base sequence. For our sample problem we used the following 9 species:
seal, cow, rabbit, opossum, mouse homo-sapience, dugong, armadillo, and rat. The
sequence data for each species are those for mitochondria downloaded from NCHI,
and the sequence length is 3392.

6.2. Evaluation Environment

As a preliminary evaluation environment, we employed a cluster as a controlled
platform rather than to employ a full-fledged distributed Grid. The employed Abacus
cluster consists of dual Athlon MP 2000+ (1.67 Ghz) nodes with 1GigaByte of
memory, and interconnected via a 100Base-T network. Both the master and the
worker have been allocated on the nodes, and we measured using 2, 4, 8, and 16
nodes.

6.3. Evaluating the original approximation algorithm using splits

Figure 6 shows the graph of the results of evaluating our original approximation
algorithm using splits. We employed 6 species from our 9, and from the total of
possible 105 phylogenetic trees, on the horizontal axis we plot the exact maximum
likelihood value, versus the approximated value computed by combining splits. As
we observe from the graph, most of the values lie on the line xy = : as such, we
observe that our original approximation method is quite good.

-21700

-21680

-21660

-21640

-21620

-21600

-21580

-21560

-21540

-21520

-21500

-21700 -21650 -21600 -21550 -21500

Computed Maximum Likelyhood Value

A
p
p
ro
xi
m
at
e
d
 L
ik
e
lih
o
od
 V
a
lu
e

Fig. 6. Comparing Approximated Likelihood Value with the Real Maximum Likelihood Value

Table 1 shows the effect on the computational costs using our approximation
method. For all possible phylogenetic trees for n species, we compare the actual
computation time of the approximation method, denoted as compT , versus the

projected computation time using the maximum likelihood method, denoted as pamlT

(computed as aveave TT × , where aveT is the sampled average value of computing the
maximum likelihood value). As we observe in the table, we drastically reduced the
overall compute time.

Table 1. Effect of Computational Cost Reduction Using the Approximation Medhod.

n Ntree Tave (sec) Tpaml Tcomp
5 15 37 9 min 30 sec 3 min 7 sec
6 105 85 2 hours 30 min 6 min 55 sec
7 945 149 1 day 15 hours 35 min 22 sec
8 10,395 241 29 days 2 hours 44 min
9 135,135 330 1 year 5 months 18 hours 41 min

The approximation method internally consists of two phases, where we compute
the maximum likelihood value of each split, and the second phase where we combine
the splits to form each phylogenetic tree. Figure 7 shows the breakdown of the
compute time for these two phases. As we can see, the time to combine the split
becomes more dominant as n grows larger. This is because the number of splits is

)2(nO whereas the number of possible phylogenetic trees is)!2(nO n . Based on
this observation we simply parallelized the first phase whereas we performed
parallelization as well as combinatorial optimization for the second phase.

0%

20%

40%

60%

80%

100%

5 6 7 8 9
Species

T
im
e
 F
ra
c
ti
o
n

Combinng
Splits into
Phylogene
tic Trees

Computing
Likelihood
Value of
All Splits

Fig. 7. Time Fraction of Two Phases in the Approximation Algorithm

6.4. Evaluating the reduction of the search space using combinatorial
optimization techniques

6.4.1. Branch-and-Bound
For branch-and-bound, we measured how much pruning of the search tree is

achieved. Since on every interior search nodes we need to combine all possible splits
combinable with the current split that represent the search status, the interior nodes
take just as much time to compute the likelihood value as the leaves; because of this
we need to account for this cost and not just account for the computational cost at the
leaves. In total, we were able to prune the search space by 83.4%, 93.5%, and 95.3%
for 7, 8 , and 9 species, respectively.

6.4.2. Simulated Annealing
For simulated annealing, the number of times the search is repeated depends on the

termination condition. Here, for benchmarking purposes, we precompute the
likelihood values of all the phylogenetic trees beforehand, and have the termination

condition be such that the result falls within 1% of the precomputed results for 10
consecutive times. Also, since there will be effects of randomness in the results, we
perform the experiment 3 times and take the average of the results (Note that these
are purely for evaluation purposes of the obtained results, and not something to be
used in practice.). We alter the initial temperature and the cooling parameters in
various experiments.

For 7 species, we found that, when we set the initial temperatures to be low, the
number of search repetitions will be smaller, but we also have had to enlarge the
cooling parameters, or otherwise we may not achieve convergence in the results.
Experimenting on various parameters, we found that we could converge and reduce
the search space by up to 95.2%, similar to the results obtained with branch-and-
bound.

6.5. Evaluation of Scalability with Parallelization

On evaluating simple parallelization of maximum likelihood value computation for
5-6 species, we found the overhead to be about 12% for 6 species. This overhead is
by no means small, and increases with larger n instead of decreasing, as one may
expect normally since the granularity does not decrease with a larger n We currently
consider that the overhead is largely due to I/O of the phylogenetic tree itself, and
working to resolve the issue. The results that follow must be regarded with this issue
in mind.

For scalability, we obtained approximately 6.5 to 7.5 speedup with 8 workers, and
12.7 speedup with 16 workers. Given that the overhead is 12%, these are nearly ideal
results.

For parallelizing our approximation scheme without combinatorial optimizations,
the overhead ranged from 30% for 5 species, to about 5% for 8 species. Figure 8
shows the scalability graph, where we obtained 10.5 times speedup for 8 species on
16 nodes.

Scalability of Paralleizing the Split Combiningl

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

Workers

S
c
al
ab
ili
ty

5 S pecies

6 S pecies

7 S pecies

8 S pecies

Fig. 8. Scalability of Parallelizing the Combining of the Splits in our Original Approximation
Algorithm.

6.5.1. Evaluating Parallelization under Branch-and-Bound
We varied the number of species by 5-9 for evaluating parallelized branch-and-

bound. The overhead due to parallelization is less that 3-4% for over 5 species,
indicating effective parallelization. Scalability is quite excellent as seen in Figure 9.
We need to conduct experiments with a significantly larger n to observe scalability of
our parallelization on a larger number of nodes on the Grid, however.

Scalability of Parallelized Branch-and-Bound

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20

Workers

S
c
al
ab
ili
ty

5 Species

6 Species

7 Species

8 Species

9 Species

Fig. 8. Scalability of Parallelizing the Branch-and-Bound Optimization

6.5.2. Evaluating Parallelization of Simulated Annealing (Replica Exchange
Method)

Finally, for simulated annealing parallelized with replica exchange method, we set
the maximum temperature values to 5, 10, 20, 50, 100, 200, and 500, and the
minimum temperature to be 1. Each worker was assigned an initial temperature value
so that the intervals of the temperature values will have constant ratio with its
neighbors, and cover the range from the minimum to the maximum. For example, if
the maximum temperature is 8, and the number of workers is 4, the ratio will be 2,
and the assigned values will be 1, 2, 4, and 8. We experimented with 4 to 16 workers
and 7 species, with the the termination condition be such that if one of the workers
satisfies the same condition as the sequential case, the entire system is terminated.

Figure 10 shows the results: here, we observe that (as expected) the replica
exchange method derives no speedup, but rather contributes to stability of the results
convergence. Irrespective of the initial temperature value, the results converge after
about 60 iterations, achieving 94% pruning of the search space. Although subject to
benchmarking in a larger system, the initial results are favorable in that the user of

our scheme may be relieved of truing the parameters appropriately to achieve fast
convergence, when simulated annealing is advantageous over branch-and-bound.

0

20

40

60

80

100

120

140

160

180

0 5 10 15 20

Workers

S
e
ar
c
h
 I
te
ra
ti
o
n
s

Max Temp 5

Max Temp 10

Max Temp 20

Max Temp 50

Max Temp 100

Max Temp 200

Max Temp 500

Fig. 8. Convergence Characteristics of Simulated Annealing / Replica Exchange Method

7. Conclusion and Future Work

We demonstrated that, by combining our approximation scheme of the likelihood
value of phylogenetic trees with appropriate combinatorial optimization techniques
and parallelization techniques on the Grid, we obtain substantial speedups with good
efficiency, pruning the search space as much as 95% for both branch-and-bound as
well as simulated annealing techniques. The net effects of all the approximations and
optimizations was 64 times over our original approximation method, or over 50,000
fold speedup over the straightforward sequential algorithm for obtaining maximum
likelihood value for each candidate tree, with 16 processors. This is a promising result
that allows comparison of fairly large number of n in a realistic timeframe.

As a future work, we need to further investigate methods for coping with scaling
up the computation for a larger n. In particular, we need to experiment with other
combinatorial optimization techniques, such as Genetic Algorithm, and/or other
algorithms for computing the likelihood values more efficiently. We also need to
reduce the parallelization overhead as well as matching the more hierarchical nature
of the resources on the Grid. Here, the hierarchical organization features of Jojo could
be of good help, but we need to validate the scalability in a real Grid. Another issue
under a practical setting is fault tolerancy, which has not been built into our system.
Since master-worker style computation is somewhat amenable to easier checkpointing,
we are planning to use some of the checkpoint as well as recovery features in the new

versions of Ninf and Jojo. Finally, we need to make both our code as well as our
environment available, possibly in the form of portals so that computed results could
be systematically stored for access by phylogenetic researchers.

Acknowledgements

This research was partially funded by the Japanese ACT-JST “Terascale large-
scale optimization using commodity Grid technologies” project, as well as the
Japanese Scientific Grant-in-Aid (A) 14702061.

References

[1] Hidemoto Nakada, Satoshi Matsuoka, and Satoshi Sekiguchi. “A Java-Based
Programming Environment for Hierarchical Grid: Jojo”, in Proceedings of IEEE
Computing in Clusters and the Grid (CCGrid) 2004, the IEEE Press, April, 2004.

[2] Hidemoto Nakada, Mitsuhisa Sato, and Satoshi Sekiguchi. “Design and
Implementation of Ninf: Towards a Global Computing Infrastructure”. In Future
Generation Computing Systems, Metacomputing Issue, Vol. 15, pp.649-658, 1999.

[3] Hidetoshi Shimodaira. “Multiple Comparisons of Log-Likelihoods and
Combining Nonnested Models with Applications to Phylogenetic Tree Selection”,
in Comm. In Statistics, Part A-Theory and Meth., Vol. 30, pp. 1751-1772, 2001.

[4] Z. Yang. “Paml: A Program Package for Phylogenetic Analysis by Maximum
Likelihood”, in CABIOS, Vo. 13, pp. 555-556, 1997.

