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Abstract. The maximum likelihood method is considered as one of the most 
reliable methods for phylogenetic tree inference. However, as the number of 
species increases, the approach quickly loses its applicability due to explosive 
exponential number of trees that need to be considered. An earlier work by one 
of the authors [3] demonstrated that, by decomposing the trees into fragments 
called splits, and calculating the individual likelihood of each (small) split and 
combining them would result in a very close approximation of the true 
maximum likelihood value, as well as achieving significant reduction in 
computational cost. However, the cost was still significant for a practical 
number of species that need to be considered. To solve this problem, we further 
extend the algorithm so that it could be effectively parallelized in a Grid 
environment using Grid middleware such as Ninf and Jojo, and also applied 
combinatorial optimization techniques. Combined, we achieved over 64 times 
speedup over our previous results in a testbed of 16 nodes, with favorable 
speedup characteristics. 

1   Introduction 

All form of life today on earth originated from a common biological ancestor; so, 
any species may be placed as some leaf node of some gigantic phylogenetic tree. One 
valuable endeavor is to infer a phylogenetic tree given a set of various species to 
determine how the individual species have exactly evolved and relate to each other 
during the course of evolution, in particular when a particular branching has occurred 
given a pair of different species. Such research is quite important to reveal the 
mechanism of how evolutions have and will occur for various life forms. 



Traditional biology mostly inferred the phylogenetic relationships amongst the 
species by their external features. However, such comparisons often tend to lack 
precision and objectiveness, and in fact sometimes lead to inconsistent results. With 
the discovery of DNA, it is now becoming possible to infer phylogenetic trees using 
mathematical models  of evolution constructed on DNA sequences. However, in 
practice straightforward inference algorithms built on such models have substantial 
computational complexity, and have remained applicable only to very small problems. 

Based on our past work that aimed to reduce the complexity in tree inference 
without losing precision [3], we further improve the algorithm by applying both 
numerical optimization and parallelization techniques on a cluster/Grid environment., 
using task parallel Grid middleware Ninf[2] and Jojo[1]. We obtained nearly 64-fold 
speedup over our earlier results as a combined effect of both on a small cluster test 
environment of 16 nodes, allowing us to scale the problem significantly. 
 

2. Inferring Phylogenetic Trees – The Complexity Problem 

A sample phylogenetic tree is illustrated in Figure 1. The maximum likelihood 
method that will compute such a tree will compute the likelihood value of kx  at a 

locus k, and consider the product of all such likelihood ∏k kxL )(  as the likelihood 

value induced from the particular DNA sequences. )( kxL  will be obtained typically 
via a non-linear optimization process involving considerable iterations, and as will be 
computationally non-trivial, as shown in Table 2. After obtaining all the likelihood 
values of candidate phylogenetic trees, we consider the one with the largest likelihood 
value to be most trustworthy. However, the number of phylogenetic trees is quite 
large in itself, or more precisely, for n specifies the number of trees is 

)!2())!3(2/())!52(( 3 nOnn nn =−− − . As a result, computing the likelihood 
values for all possible candidate trees becomes quickly impractical, even for a 
relatively small n.  

To cope with such massive computational complexity, one of the authors proposed 
an approximate method for computing the likelihood value of a given tree. We call a  
branch of a phylogenetic tree a split, and given n species we can divide a given 
phylogenetic tree into )3( −n  set of splits. We then compute the likelihood values 
of given splits using the maximum likelihood method, and derive an approximate 
value of the likelihood value using matrix manipulations. This method has 
considerable computational complexity advantage without losing much precision. 
Since the total number of possible splits is )2()1(2 1 nn On =+−− , we can 
significantly reduce the overall computational cost. However, the number of 
phylogenetic trees is still significant, and this method, although a definite 
improvement, still was too expensive of realistic values of n. 
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Fig. 1. An Example Phylogenetic Tree  

 

 

 

Fig. 2. DNA Sequence, and computing of the likelihood values. 

 

3. Overview of our Proposed Improvements to the Split Method 

Our improvements over the previous proposal are twofold. One is to apply 
combinatorial optimization techniques to reduce the search space for the trees. 
Another is to parallelize the search effectively over the Grid using appropriate task-
parallel Grid middleware, Ninf[2] and Jojo[1]. The resulting program was shown to 
execute efficiently and with significant speedup, even for a relatively small number of 
nodes on a small-scale cluster. Figure 3 shows the overall workflow; here, we see that 
the program largely consists of two phases, the first phase being “computing the 
likelihood value of each split using the maximum likelihood method”, and the second 
phase being the “combining the splits and searching the optimal results using 
combinatorial optimization techniques and their parallelization”. The former will 



perform parameter-sweep parallelization of likelihood values of each possible split, 
either sequentially or in parallel on the Grid, and output the results in files for the 
second phase. The second phase in turn will either directly obtain the likelihood 
values of all combinations of splits, or use combinatorial optimization techniques 
such as branch-and bound or simulated annealing, and obtain the optimal likelihood 
value from the “more likely” candidates, again possibly in parallel on the Grid. 

For both phases, we parallelize the computation using master-worker scheme, and 
implement the former using the Ninf GridRPC system, whereas for the latter we 
perform further hierarchical master-worker parallelization using a Java Grid 
parallelization system Jojo. There are various reasons we employ two different Grid 
middleware systems; the primary reason for using Ninf GridRPC is that, it is easy to 
integrate existing maximum likelihood numerical packages, while the reason we 
employ Jojo for the second phase is that, the latter involves hierarchical 
parallelization, in particular branch-and-bound computation. From a pure Grid 
middleware research perspective it is also interesting to investigate how the two 
different middleware will interoperate smoothly on the Grid. 
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Fig. 3. The Overall Workflow of Deriving the Phylogenetic Tree with Maximum Likelihood 

Value.  

4. Optimizing Phylogenetic Tree Inference 

In order to reduce the number of candidate phylogenetic trees, we employ 
combinatorial optimization techniques. 



4.1. Using Branch-and-Bound 

Since each phylogenetic tree corresponds to )3( −n  sets of splits, we obtain a 
new tree by combining a split onto a star-shaped phylogenetic tree one by one, as 
shown in Figure 4. Since there are multiple ways how split can be combined at each 
stage, the search space branches out into a search tree as in Figure 4, with the leaves 
being the candidate phylogenetic tree. We then apply branch-and-bound technique 
onto this search tree, allowing us to prune the search space significantly with an 
appropriate bounds function. 
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Fig. 4. Formulating a Search Tree of Combining Splits 

 
In order to prune the branches, we compute the upper bound of the likelihood 

value for each node in the tree, and compare the value against the current solution; if 
the upper bound is greater, we continue the search by expanding the node; otherwise, 
we prune the branch of the search tree under that node.  

As an upper bound, we employ the combined likelihood value where we combine 
all possible splits onto that (pair of splits) node. 

4.2. Using Simulated Annealing  

For simulated annealing, we obtain the neighboring solutions based on splits, as 
we see in Figure 5. Firstly, from the set of splits that signifies the current solution, we 
arbitrarily remove one of the splits. Then, of the three possible splits that could be 
combined with the current set, we remove the split that would result in idempotent 
return to the original before split removal. Then, from the remaining two we pick one 
at random, and combine with the set of splits, deriving the neighboring solutions. The 
“cooling” function we employed was, given the cooling parameter α  we simply 
perform exponential degradation currentnext TT α=  )10( <<< α . 
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Fig. 5. Creating Neighboring Solutions and Candidates in the Simulated Annealing Scheme 

5. Parallelizing Phylogenetic Tree Inference on the Grid 

5.1. Using Simulated Annealing 

The computation in the first phase continues in a simple master worker style. The 
master first creates a pool of phylogenetic trees or splits subject to further 
computation, and sends them as jobs off to the worker nodes on the Grid one by one. 
The worker computes the maximum likelihood and returns the value; the worker 
aggregates the returned result and resends another job to an idle worker, until the pool 
of trees and/or splits is exhausted. 

5.2. Parallelizing the Split Method Directly 

The second phase can also be parallelized in a straightforward fashion in a similar 
manner using master-worker style computation. This time the master sends the 
phylogenetic tree and the corresponding split pair to the workers. The workers in turn 
computes the approximate likelihood values of the combined phylogenetic tree based 
on the likelihood values obtained in phase one, and returns the result to the master, 
The master keeps track of the process, continuing until all the phylogenetic trees that 
can be generated are covered, and picks the tree with the largest likelihood value as 
the result. 



5.3. Efficient Parallelization of the Split Method using Branch-and-Bound 

With branch-and-bound, parallelization is performed somewhat differently for 
phase two. However, a common problem with parallelizing branch-and-bound is that, 
there could be considerable load imbalance depending on how the search tree is 
divided, and moreover, some computation may go to waste if the bound value of 
some branch turns out to prune a computation ongoing on some other processor. The 
shape and the depth of subtrees of a search tree may greatly differ amongst one 
another, and whether or not a search should be conducted on a subtree is runtime 
dependent. As such, naïve master-worker subdivision of (sub) search tree may turn 
out to be quite inefficient. 

In order to avoid this problem, we set a limit on the number of “problems” (i.e., 
computing the likelihood value of each split) individual workers will compute for 
each subtree. The master maintains a pool of problems, and distributes each one by 
one to the workers. The worker then proceeds to solve the problems in the manner 
similar to Section 5.2. If the number of problems that the worker has solved exceeds 
some threshold value, the problem is returned to the master. The master in turn re-
adds the problem to the pool for subsequent re-allocation to some worker. 

5.4. Parallelizing Simulated Annealing 

For parallelizing simulated annealing, we employed the replica exchange method 
as outlined below. Each worker maintains an independent simulated annealing 
process, each with a different temperature parameter. At some periodic exchange 
interval the worker sends the current likelihood value to the master, and requests for 
exchanging the temperature value. Let us label this worker i. When the master 
receives this request, the master notifies worker j, where j < i and holds the maximum 
temperature value, that an exchange request has been made. The worker j in turn 
judges whether the exchange of the temperature should take place according to the 
temperature and the likelihood value it has received. If it decides to accept the 
exchange it performs the temperature exchange and notifies the master its previous 
temperature and the current likelihood value; the master then notifies worker i that the 
exchange was successful, the worker i performs its own exchange internally, and the 
entire exchange process completes. Otherwise, if the worker j decides to deny the 
request, it notifies the master who in turn notifies worker i that the exchange was 
unsuccessful. Irrespective of whether the exchange was successful or not, the workers 
continue with their search until the next exchange period is encountered. 



6. Evaluation of Our Proposed Scheme 

6.1. Evaluation Criteria and the Target Problem 

As the evaluation criteria, we employed and measured the followings: 
 

 Evaluating the original approximation algorithm using splits: We initially 
investigate the effect of our original scheme of deriving the approximate 
likelihood value by combining splits to form the phylogenetic tree, by comparing 
its precision and compute cost 

 Evaluating the reduction of the search space using combinatorial 
optimization techniques: We next evaluate how much the search space has been 
reduced by employing branch-and-bound and simulated annealing techniques 

 Evaluating the parallelization efficiency and scalability: Although in theory 
master-worker computation could approach near-perfect speedup, in reality we 
may observe loss in efficiency as we scale the problem larger due to various 
factors including communication overhead between the master and the worker, as 
well as the load of the master increasing and becoming the sequential bottleneck. 
The metrics we employ are firstly the speedup value due to parallelization, i.e., 

parallel

serial

T
T

Speedup =  

and in particular we measure the parallelization overhead as when we have 
just one master and one worker. We also compute the scalability as: 

 
sworN

SpeedupyScalabilit
ker

=  

where Nworkers is the total number of workers. 
We employed paml[4] as the program that computes the likelihood value given a 

particular base sequence. For our sample problem we used the following 9 species: 
seal, cow, rabbit, opossum, mouse homo-sapience, dugong, armadillo, and rat. The 
sequence data for each species are those for mitochondria downloaded from NCHI, 
and the sequence length is 3392. 

6.2. Evaluation Environment 

As a preliminary evaluation environment, we employed a cluster as a controlled 
platform rather than to employ a full-fledged distributed Grid. The employed Abacus 
cluster consists of dual Athlon MP 2000+ (1.67 Ghz) nodes with 1GigaByte of 
memory, and interconnected via a 100Base-T network. Both the master and the 
worker have been allocated on the nodes, and we measured using 2, 4, 8, and 16 
nodes. 



6.3. Evaluating the original approximation algorithm using splits 

Figure 6 shows the graph of the results of evaluating our original approximation 
algorithm using splits. We employed 6 species from our 9, and from the total of 
possible 105 phylogenetic trees, on the horizontal axis we plot the exact maximum 
likelihood value, versus the approximated value computed by combining splits. As 
we observe from the graph, most of the values lie on the line xy = : as such, we 
observe that our original approximation method is quite good.  
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Fig. 6. Comparing Approximated Likelihood Value with the Real Maximum Likelihood Value 

Table 1 shows the effect on the computational costs using our approximation 
method. For all possible phylogenetic trees for n species, we compare the actual 
computation time of the approximation method, denoted as compT , versus the 

projected computation time using the maximum likelihood method, denoted as pamlT  

(computed as aveave TT × , where aveT  is the sampled average value of computing the 
maximum likelihood value). As we observe in the table, we drastically reduced the 
overall compute time. 

Table 1. Effect of Computational Cost Reduction Using the Approximation Medhod. 

n Ntree Tave (sec) Tpaml Tcomp 
5 15 37 9 min 30 sec 3 min 7 sec 
6 105 85 2 hours 30 min 6 min 55 sec 
7 945 149 1 day 15 hours 35 min 22 sec 
8 10,395 241 29 days 2 hours 44 min 
9 135,135 330 1 year 5 months 18 hours 41 min 

 



The approximation method internally consists of two phases, where we compute 
the maximum likelihood value of each split, and the second phase where we combine 
the splits to form each phylogenetic tree. Figure 7 shows the breakdown of the 
compute time for these two phases. As we can see, the time to combine the split 
becomes more dominant as n grows larger. This is because the number of splits is 

)2( nO  whereas the number of possible phylogenetic trees is )!2( nO n . Based on 
this observation we simply parallelized the first phase whereas we performed 
parallelization as well as combinatorial optimization for the second phase. 
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Fig. 7. Time Fraction of Two Phases in the Approximation Algorithm 

6.4. Evaluating the reduction of the search space using combinatorial 
optimization techniques 

6.4.1. Branch-and-Bound 
For branch-and-bound, we measured how much pruning of the search tree is 

achieved. Since on every interior search nodes we need to combine all possible splits 
combinable with the current split that represent the search status, the interior nodes 
take just as much time to compute the likelihood value as the leaves; because of this 
we need to account for this cost and not just account for the computational cost at the 
leaves. In total, we were able to prune the search space by 83.4%, 93.5%, and 95.3% 
for 7, 8 , and 9 species, respectively. 

6.4.2. Simulated Annealing 
For simulated annealing, the number of times the search is repeated depends on the 

termination condition. Here, for benchmarking purposes, we precompute the 
likelihood values of all the phylogenetic trees beforehand, and have the termination 



condition be such that the result falls within 1% of the precomputed results for 10 
consecutive times. Also, since there will be effects of randomness in the results, we 
perform the experiment 3 times and take the average of the results (Note that these 
are purely for evaluation purposes of the obtained results, and not something to be 
used in practice.). We alter the initial temperature and the cooling parameters in 
various experiments. 

For 7 species, we found that, when we set the initial temperatures to be low, the 
number of search repetitions will be smaller, but we also have had to enlarge the 
cooling parameters, or otherwise we may not achieve convergence in the results. 
Experimenting on various parameters, we found that we could converge and reduce 
the search space by up to 95.2%, similar to the results obtained with branch-and-
bound. 

6.5. Evaluation of Scalability with Parallelization 

On evaluating simple parallelization of maximum likelihood value computation for 
5-6 species, we found the overhead to be about 12% for 6 species. This overhead is 
by no means small, and increases with larger n instead of decreasing, as one may 
expect normally since the granularity does not decrease with a larger n We currently 
consider that the overhead is largely due to I/O of the phylogenetic tree itself, and 
working to resolve the issue. The results that follow must be regarded with this issue 
in mind. 

For scalability, we obtained approximately 6.5 to 7.5 speedup with 8 workers, and 
12.7 speedup with 16 workers. Given that the overhead is 12%, these are nearly ideal 
results. 

For parallelizing our approximation scheme without combinatorial optimizations, 
the overhead ranged from 30% for 5 species, to about 5% for 8 species. Figure 8 
shows the scalability graph, where we obtained 10.5 times speedup for 8 species on 
16 nodes. 
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Fig. 8. Scalability of Parallelizing the Combining of the Splits in our Original Approximation 
Algorithm. 

6.5.1. Evaluating Parallelization under Branch-and-Bound 
We varied the number of species by 5-9 for evaluating parallelized branch-and-

bound. The overhead due to parallelization is less that 3-4% for over 5 species, 
indicating effective parallelization. Scalability is quite excellent as seen in Figure 9. 
We need to conduct experiments with a significantly larger n to observe scalability of 
our parallelization on a larger number of nodes on the Grid, however. 
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Fig. 8. Scalability of Parallelizing the Branch-and-Bound Optimization 

 

6.5.2. Evaluating Parallelization of Simulated Annealing (Replica Exchange 
Method) 

Finally, for simulated annealing parallelized with replica exchange method, we set 
the maximum temperature values to 5, 10, 20, 50, 100, 200, and 500, and the 
minimum temperature to be 1. Each worker was assigned an initial temperature value 
so that the intervals of the temperature values will have constant ratio with its 
neighbors, and cover the range from the minimum to the maximum. For example, if 
the maximum temperature is 8, and the number of workers is 4, the ratio will be 2, 
and the assigned values will be 1, 2, 4, and 8. We experimented with 4 to 16 workers 
and 7 species, with the the termination condition be such that if one of the workers 
satisfies the same condition as the sequential case, the entire system is terminated.  

Figure 10 shows the results: here, we observe that (as expected) the replica 
exchange method derives no speedup, but rather contributes to stability of the results 
convergence. Irrespective of the initial temperature value, the results converge after 
about 60 iterations, achieving 94% pruning of the search space. Although subject to 
benchmarking in a larger system, the initial results are favorable in that the user of 



our scheme may be relieved of truing the parameters appropriately to achieve fast 
convergence, when simulated annealing is advantageous over branch-and-bound.  
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Fig. 8. Convergence Characteristics of Simulated Annealing / Replica Exchange Method 

7. Conclusion and Future Work 

We demonstrated that, by combining our approximation scheme of the likelihood 
value of phylogenetic trees with appropriate combinatorial optimization techniques 
and parallelization techniques on the Grid, we obtain substantial speedups with good 
efficiency, pruning the search space as much as 95% for both branch-and-bound as 
well as simulated annealing techniques. The net effects of all the approximations and 
optimizations was 64 times over our original approximation method, or over 50,000 
fold speedup over the straightforward sequential algorithm for obtaining maximum 
likelihood value for each candidate tree, with 16 processors. This is a promising result 
that allows comparison of fairly large number of n in a realistic timeframe. 

As a future work, we need to further investigate methods for coping with scaling 
up the computation for a larger n. In particular, we need to experiment with other 
combinatorial optimization techniques, such as Genetic Algorithm, and/or other 
algorithms for computing the likelihood values more efficiently. We also need to 
reduce the parallelization overhead as well as matching the more hierarchical nature 
of the resources on the Grid. Here, the hierarchical organization features of Jojo could 
be of good help, but we need to validate the scalability in a real Grid. Another issue 
under a practical setting is fault tolerancy, which has not been built into our system. 
Since master-worker style computation is somewhat amenable to easier checkpointing, 
we are planning to use some of the checkpoint as well as recovery features in the new 



versions of Ninf and Jojo. Finally, we need to make both our code as well as our 
environment available, possibly in the form of portals so that computed results could 
be systematically stored for access by phylogenetic researchers. 
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