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| Introduction

Supervised Learning

~ Learn a correspondence between training data and labels.

<~ Require a large labeled dataset for training.
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o Hard to let classifiers learn new concepts from little data.




| Introduction

One-shot Learning
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~ Learn a concept from one or only a few training
example, contrary to the normal practice of using a large
amount of data.




Image classification

General approach

- Purpose: classify the image with large amount of

data.
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| Introduction
Our Method

~ @oal: categorize the image with only one labeled data

per class.
~ Contribution: Triplet Network + Data Augmentation.
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|' Related work

Convolutional Siamese Network [Koch+, 2015]

< Architecture
~ Learn similarity between two inputs.
~ 2 identical neural networks (same weights).
~ Optimized by a contrastive loss.

Contrastive loss




|' Related work

Convolutional Siamese Network [Koch+, 2015]

- Contrastive loss function
- Evaluate how well the network is distinguishing a
given pair of images.
- Keep the samples belonging the same class close to
each other and separate the dissimilar samples.

Contrastive loss




Triplet Network [Hoffer+, 2015]

- Aim to learn useful representations by distance
comparisons.

~ Comprised of 3 instances of the same feedforward
network (with shared parameters).

 Output 2 intermediate values - the L2 distance.

Comparator
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Procedure

Triplet Network
> Triplet Loss function
FaceNet (Schroff et al., 2015)
KNN classifier
Make the prediction by using the feature vectors of
training and test points.

Training data

Triplet — Embeddings — KNN classifier
/ Network

Test data



. What is the triplet loss?
Triplet Network ! b

> 3 Inputs: Triplet loss
Anchor: sample from /}\
dataset.
128-d 128-d 128-d
Positive: a sample from Embeddings Embeddings Embeddings
same class as the Anchor. I I I
Negative: a sample from Share Share

. CNN “Weights CNN(Weiths)CNN
different class than the

Anchor. [
CNN model (shared weights)

Input shape: (28, 28, 1)
Output shape: 128
Triplet Loss function

Positive Anchor Negative



Triplet Loss

L = max(d(x,, x,) — d(x,,x,) + a,0)

> where a Is a margin that is enforced between positive
and negative pairs.

> Minimizes the distance between the anchor and the
positive.

Maximizes the distance between the anchor and the
negative.

Negative |
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Anchor Anchor
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k-Nearest Neighbors

» One of the simplest way to perform classification.
'~ Most kNN classifiers use Euclidean distances (also
known as L2-norm distance) to measure the similarities

between the instances which are represented as vector
iInputs.

New example
to classify
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How do we choose the data?

- MNIST dataset
~ A'large database of handwritten digits widely used in
the field of machine learning.

- We randomly select 1 sample from each class in the
MNIST dataset.

Q
=
3

LYO
~
e

R T4 AP0
=,
=0

o oegN) B Doy~

oS~ &\ b
[ SRS

SULWNNO
ARlWNhN~O
MW N~O
<Lt -0

< W

N
T
0

N g

afxh sy twy~p

o % N G e
R U A
w e}

0 SN v

e B

N g~ e~ W N
Q

K~

-0

Q X

o
~b 00
SR



count

" Experiments

How do we generate the dataset?

< Qur initial dataset.
< Our augmented dataset.

All the data from MNIST

Only 1 sample selected
from MNIST

count

Data augmentation
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How do we select triplets?

Our initial dataset.

Positive Anchor Negative

Our augmented dataset.
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Positive Anchor Negative
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Accuracy
5 6 7 8 9 Average

Method (dataset)

TripletNN (not Agumented) | 14% | 18% | 11% | 6% 0% 9.8%

CNN (Augmented) 25% | 26% | 16% | 24% | 13% | 20.8%

TripletNN (Augmented) | 42% | 56% | 66% | 56% | 14% | 46.8%

Actual label
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Triplet neural network make sense in this experiment, the
accuracy shows better than CNN model in one-shot
learning problem.

This study indicates that the benefits gained from data
augmentation also work well on one-shot learning problem.



- Work on other much larger and complex datasets for one-
shot classification, (e.g. Fashion MNIST, Omniglot, Mini-

ImageNet), to validate whether our method is resultful.

Find more effective approaches and investigate other
techniques based on metric learning or meta learning, or

combine other method such as Adversarial Generalized
Model.
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