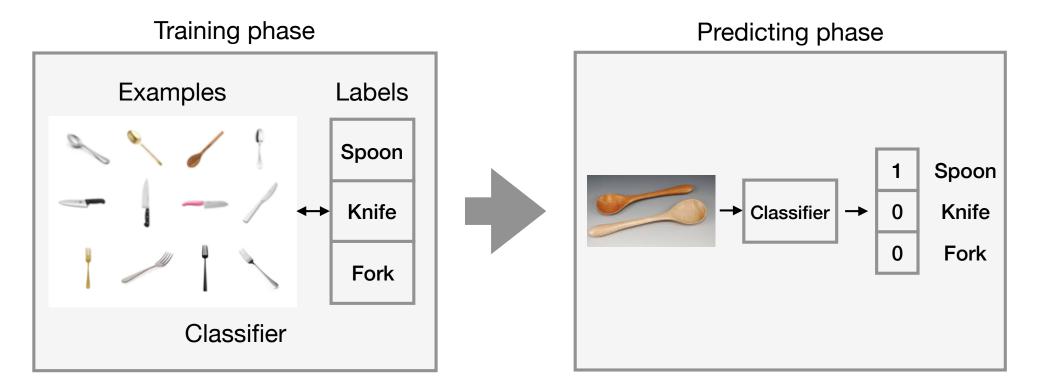
One-shot Learning using Triplet Networks with kNN Classifier

Mu Zhou^{1,2}, Yusuke Tanimura^{2,1}, Hidemoto Nakada^{2,1}

¹University of Tsukuba ²Artificial Intelligence Research Center - National Institute of Advanced Industrial Science and Technology



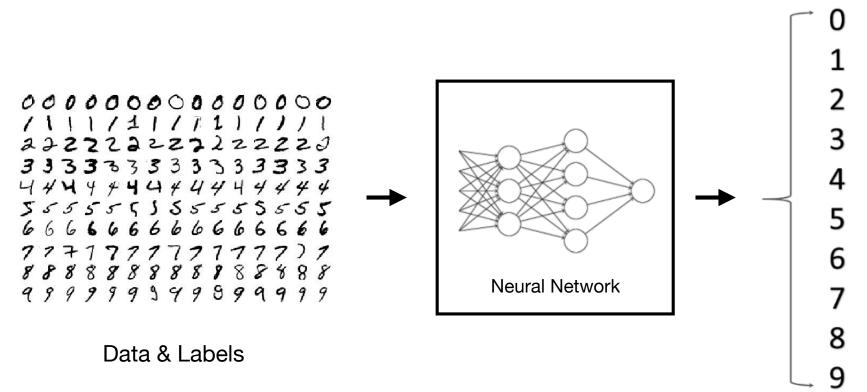
Introduction

- Related work
- Method
- Experiments
- Results

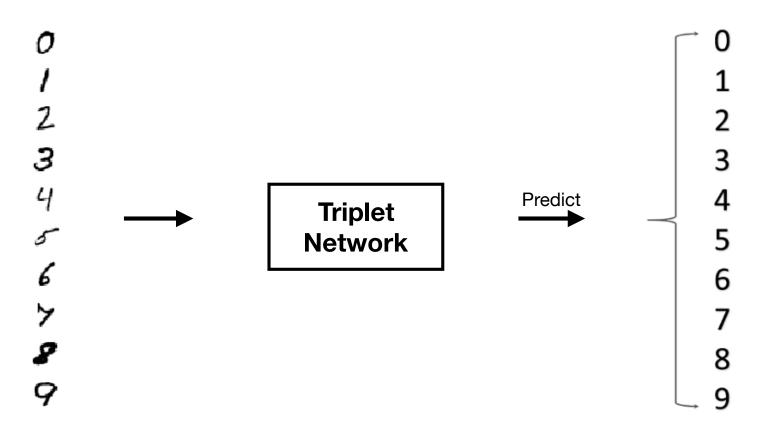
Supervised Learning

- Learn a correspondence between training data and labels.
 - Require a large labeled dataset for training.

Hard to let classifiers learn new concepts from little data.


One-shot Learning

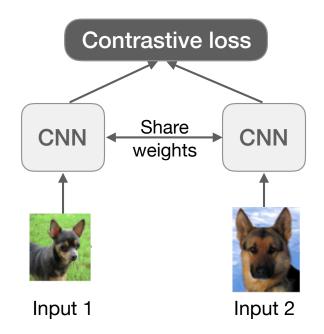
Learn a concept from one or only a few training example, contrary to the normal practice of using a large amount of data.


Image classification

- General approach
 - Purpose: classify the image with large amount of labeled training data.

Our Method

- Goal: categorize the image with only one labeled data per class.
- Contribution: Triplet Network + Data Augmentation.

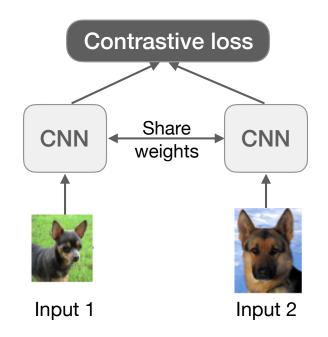

- Introduction
- Related work
- Method
- Experiments
- Results

Related work

Convolutional Siamese Network [Koch+, 2015]

Architecture

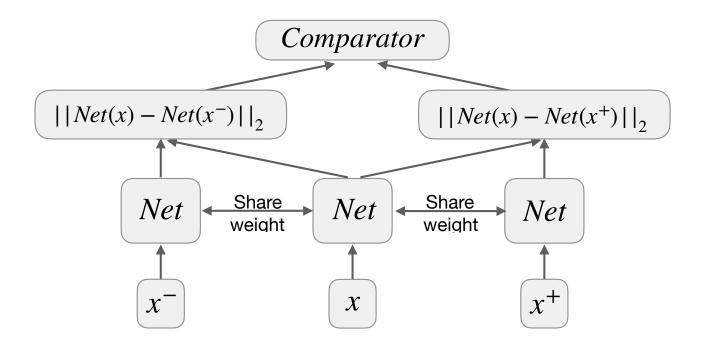
- Learn similarity between two inputs.
- 2 identical neural networks (same weights).
- Optimized by a contrastive loss.



Related work

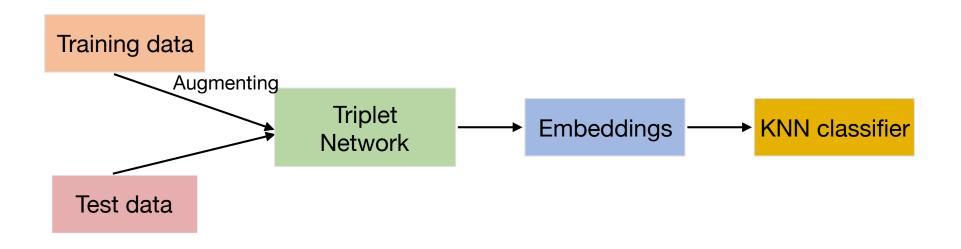
Convolutional Siamese Network [Koch+, 2015]

Contrastive loss function

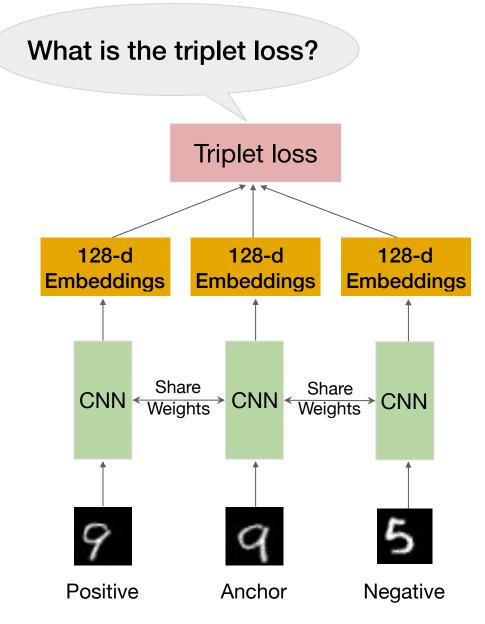

- Evaluate how well the network is distinguishing a given pair of images.
- Keep the samples belonging the same class close to each other and separate the dissimilar samples.

Related work

Triplet Network [Hoffer+, 2015]

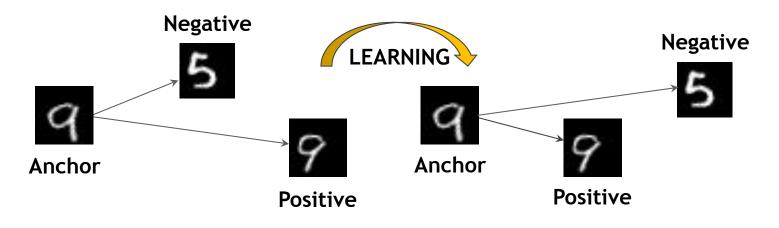

- Aim to learn useful representations by distance comparisons.
- Comprised of 3 instances of the same feedforward network (with shared parameters).
- Output 2 intermediate values the L2 distance.

- Introduction
- Related work
- Method
- Experiments
- Results

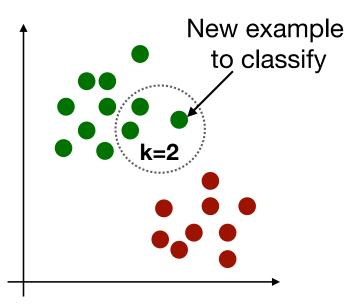

Procedure

- Triplet Network
- Triplet Loss function
 - FaceNet (Schroff et al., 2015)
- kNN classifier
 - Make the prediction by using the feature vectors of training and test points.

Triplet Network


- 3 inputs:
 - Anchor: sample from dataset.
 - Positive: a sample from same class as the Anchor.
 - Negative: a sample from different class than the Anchor.
- CNN model (shared weights)
 - Input shape: (28, 28, 1)
 - Output shape: 128
- Triplet Loss function

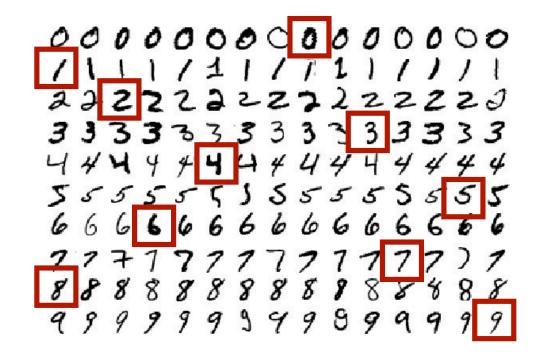
Triplet Loss


•
$$L = max(d(x_a, x_p) - d(x_a, x_n) + \alpha, 0)$$

- where α is a margin that is enforced between positive and negative pairs.
- Minimizes the distance between the *anchor* and the *positive*.
- Maximizes the distance between the *anchor* and the *negative*.

k-Nearest Neighbors

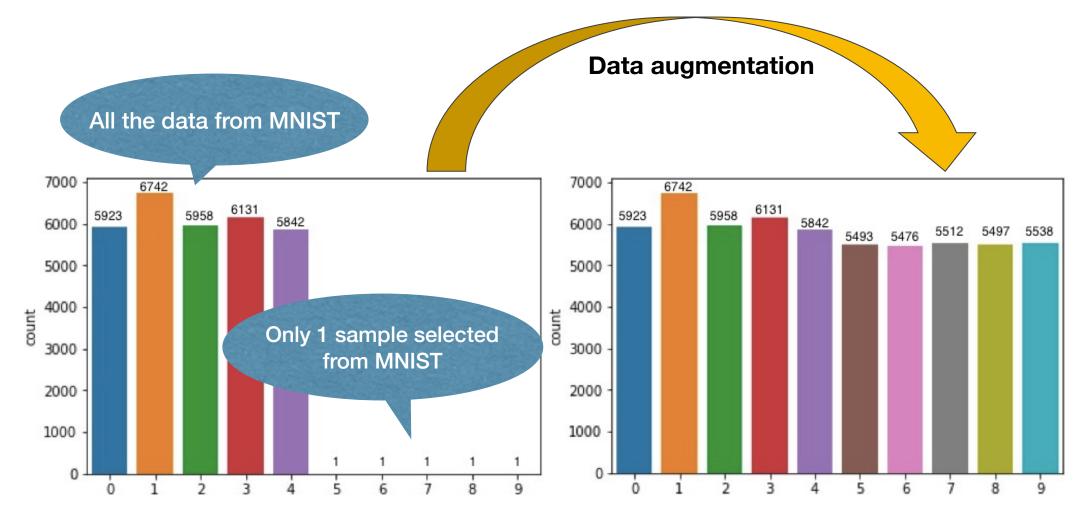
- One of the simplest way to perform classification.
- Most kNN classifiers use Euclidean distances (also known as L2-norm distance) to measure the similarities between the instances which are represented as vector inputs.



- Introduction
- Related work
- Method
- Experiments
- Results

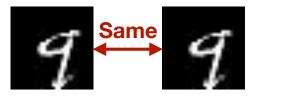
Experiments

How do we choose the data?


- MNIST dataset
 - A large database of handwritten digits widely used in the field of machine learning.
 - We randomly select 1 sample from each class in the MNIST dataset.

Experiments

How do we generate the dataset?


- Our initial dataset.
- Our augmented dataset.

Experiments

How do we select triplets?

Our initial dataset.

Positive

Anchor

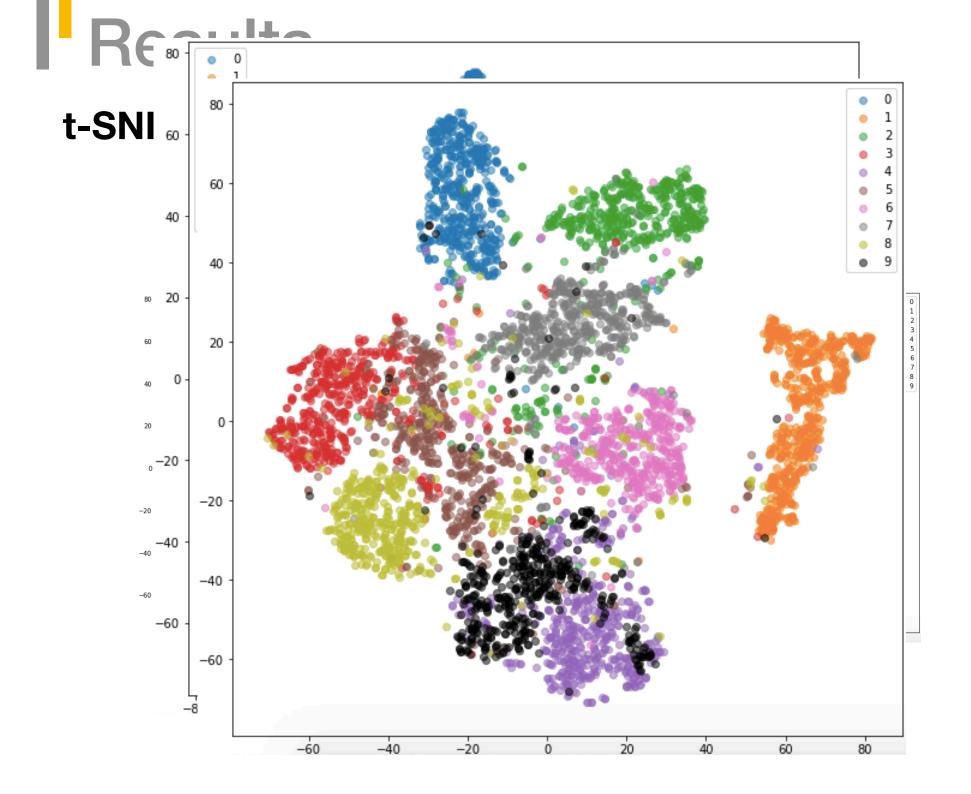
Negative

Our augmented dataset.

Positive

Anchor

Negative


- Introduction
- Related work
- Method
- Experiments
- Results

Results

Method (dataset)			Ac	curacy		
Method (dataset)	5	6	7	8	9	Average
TripletNN (not Agumented)	14%	18%	11%	6%	0%	9.8%
CNN (Augmented)	25%	26%	16%	24%	13%	20.8%
TripletNN (Augmented)	42%	56%	66%	56%	14%	46.8%

Can not be recognized.										In a mess.												Well predicted!!												
			W	/itr	1 11	111	ic i	da	Ita	se	t		wi	th	aı	ıgı	ne	n	эđ	da	ata	se	t	W	vith	a	Jgı	ПС	7114	u	d	ata	ise	t
	- 0	977	0	2	1	0	0	0	0	0	0	0	- 938	0	1	1	0	3	1	15	2	19	0	- 95	7 0	2	1	0	3	À T	1	3	9	
crual		0	1128	3	4	0	0	0	0	0	0	Ч	0	1063	4	3	0	3	13	12	2	5	г	0	1119	9 0	4	0	3		6	1	1	- 100
2	~ -	12	4	993	19	4	0		0	0	0	2	- 1	2	907	8	0	51	8	33	21	6	2	- 16	5	896	15	7	31	18	25	8	11	- 800
4 '	m -	0	1	18	991	0	0	0	0	0	0	m	- 1	0	1	884	0	47	2	29	34	12	m	- 0	1	11	945	1	22	8	6	11	5	
- I ·	4 -	2	2	2	0	976	0	0	0	0	0	4	- 1	1	0	0	857	31	44	6	26	16	4	- 4	3	1	1	888	11	15	6	3	50	- 600
- I -	ω.	40	19	7	680	81	65	0	0	0	0	ŝ	27	10	2	235	16	234	60	112	66	130	ŝ	- 7	5	6	275	34	383	27	16	110	29	
	ω-	222	14	71	19	537	0	95	0	0	0	9	- 78	9	5	29	87	112	224	154	160	100	9	- 63	3	50	9	165	41	445	52	55	75	- 400
	~ -	103	78	254	429	104	0	0	60	0	0	7	- 18	2	78	183	1	191	44	138	244	129	7	- 39	24	81	33	18	136	12	577	64	44	
	∞ -	60	54	120	512	192	1	3	0	32	0	œ	- 5	31	28	110	22	93	159	134	214	178	œ	- 5	22	19	108	40	173	87	11	486	23	- 200
	ი -	31	12	11	70	883	0	0	0	0	2	6	4	11	5	15	352	248	157	48	57	112	6	- 24	14	5	33	643	108	28	21	36	97	- 0
		ó	i	ź	3	4	5	6	7	8	9		ó	i	ź	3	4	5	6	7	8	9		ó	i	2	3	4	5	6	7	8	9	-0

Predicted label

Conclusion

- Triplet neural network make sense in this experiment, the accuracy shows better than CNN model in one-shot learning problem.
- This study indicates that the benefits gained from data augmentation also work well on one-shot learning problem.

Future work

Work on other much larger and complex datasets for oneshot classification, (e.g. Fashion MNIST, Omniglot, Mini-ImageNet), to validate whether our method is resultful.

 Find more effective approaches and investigate other techniques based on metric learning or meta learning, or combine other method such as Adversarial Generalized Model.

Thank you!

This paper is based on results obtained from a project commissioned by the New Energy and Industrial Technology Development Organization (NEDO). This work was supported by JSPS KAKENHI Grant Number JP16K00116.