
CloudQ: A Secure AI / HPC Cloud Bursting System
Shinichiro TAKIZAWA† Masaaki SHIMIZU‡ Hidemoto NAKADA† Hiroya MATSUBA‡ Ryousei TAKANO†

† National Institute of Advanced Industrial Science and Technology
Tokyo, Japan

‡ Hitachi, Ltd.
Tokyo, Japan

Abstract—As a method to optimize the investment for compu-
tational resources, cloud bursting is collecting a lot of attention,
where the organizations utilize the cloud computing environment
in on-demand fashion, while preserving the minimum amount
of on-premise resources for sensitive data processing. For the
practical cloud bursting, we need to achieve 1) secure job /
data sharing, 2) uniform job execution environment for on-
premise and cloud, and 3) on-demand automatic deployment of
the execution environment on the cloud. To enable these items,
we propose a meta-scheduling system called CloudQ. CloudQ 1)
uses cloud object storage for data sharing, 2) utilizes container
images to provide uniform job execution environment, and 3)
automatically deploys an execution environment on the cloud.

Index Terms—cloud bursting, public cloud, auto scaling

I. INTRODUCTION

Public cloud environments are widely adopted as computa-
tional resources for academic/industrial research activities. On
the other hand, each organization still has to preserve an on-
premise environment to process sensitive data which cannot
be shipped outside of the organization. To fully utilize both
of them, a research area called cloud bursting is actively
explored recently [1] [2] [3]. With cloud bursting, the on-
premise environment and cloud environment are seamlessly
integrated, and while the users use the on-premise environment
as a primal choice, they also can use cloud environment as a
resort when the on-premise environment is crowded.

To enable cloud bursting, the following three issues have to
be addressed:

1) Secure communication:
We have to transfer input/output data and the job sub-
mission information between the client and the cloud.

2) Abstract away the difference between the on-premise
and cloud environments:
In general, these environments tend to differ in several
aspects, such as the library versions or batch queueing
systems. To integrate these systems seamlessly, we need
to abstract away such differences.

3) Execution environment deployment on the cloud:
The cloud environment has to be dynamically allocated
and deployed on demand to avoid excessive cloud cost.

We propose a meta-scheduling system for cloud bursting
called CloudQ which addresses the issues above.

CloudQ 1) uses cloud-object storage as a communication
channel to enable secure communication, 2) introduces meta
job script which abstract away the difference between the two
environments, and 3) has automatic deployment capability to
establish a computing environment on the cloud in on-demand
fashion.

Local scheduler

Local scheduler

Cloud
Object
Storage

Submit Jobs and
transfer data (put)

Cloud

Agent

Fetch Jobs and Data (get)

qsub
Compute Node

On-premise

Agent Compute Node

Container
Repository

Download

Client

qsub

Download

builder

Deploy

Fig. 1. The overview of CloudQ.

CloudQ is mainly composed of the following three modules:
the builder which deploys computation environment including
an autoscale local batch queueing system on the cloud, the
agent which runs on the deployed computing environment and
receives jobs from the user and submits them to the local batch
scheduler, and the client which helps users to submit their
jobs, monitor the jobs, and retrieve the job results. Figure 1
shows the overview of CloudQ.

In the following sections, we briefly introduce the tech-
niques we employed in CloudQ.

II. JOB SUBMISSION VIA CLOUD STORAGE

User authentication and authorization are the most important
thing for secure job submission to the cloud environment.
While ssh is broadly adopted for user authentication in the
HPC area, it is not adequate for our purpose. Once authenti-
cated, ssh users are allowed to do anything, while we want to
restrict the user to submit jobs only.

While it is relatively easy to implement our own server mod-
ule that does authentication based on public key technology,
maintaining such a server safely will be quite a pain.

We employed the S3-compatible cloud storage servers
for job submission. The client and agent will poll on the
pre-determined storage backet for communication. The S3-
compatible cloud storages support user ID and token-based
authentication. The token can have expiration time enabling
secure management of the tokens. Capabilities assigned to the
user can be precisely controled by the agent.

Note that both the client and the agent do not use inbound
ports for communication; both of them use outbound only.
This will contribute to the secure management of the agent.

III. ABSTRACTION OF THE COMPUTING ENVIRONMENT
WITH CONTAINER AND META JOB SCRIPT

CloudQ employed docker containers for the job execution
environment. Users specify the environment in the job script.

1 #$ run_on:ANY
2 #$ project:project01
3 #$ resource:type1
4 #$ n_resource:1
5 #$ walltime:1:00:00
6 #$ shell:bash
7 #$ container_image: img0=\
8 docker://nvcr.io/nvidia/tensorflow:19.07-py3
9

10 wget https://script.is/here train.py
11 cloudq_cs_cp s3://myobjs/data ./data
12 cloudq_container_run $IMG0 python ./train.py data

Fig. 2. An example of meta job script file.

The local scheduler is in charge of downloading the container
images from the repositories and running them. The containers
encapsulate the environment and present uniform execution
environment to the job, abstracting away the difference be-
tween on-premise and cloud.

There are other kinds of differences which cannot be hidden
by the container only, such as local scheduler types, job
queue names, and commands that are unique to the specific
environment. We introduced meta job script which gives
canonical names for these things. Users uses the canonical
names in the scripts, and the agent will replace them to the
local environment specific names. Figure 2 shows an example
of meta job script file. Commands with prefix cloudq_ are
the canonical commands which will be replaced with local
commands.

IV. EXECUTION ENVIRONMENT DEPLOYMENT ON THE
CLOUD

To deploy the job execution environment on the cloud we
need to take care of security, user management, and account
management. To fullfill these requirements, we came up with
two approaches. One approach is to deploy a multi-user
environment that is similar to the on-premise environment.
Another approach is to deploy a single-user environment for
each user. In this paper, we call the former multi-user style
and the latter single-user style.

In the multi-user style, we set up a shared cluster on
the cloud that have the same user name space as the on-
premise cluster. The cluster is permanently maintained while
the computation nodes are launched/stopped based on the user
requirement. The user name space has to be synchronized with
the on-premise cluster. Accounting has to be addressed using
the local batch scheduler log files.

In the single-user style, each user launches his/her own
dedicated job execution environment on the cloud, using the
builder command we provide. We do not need to manage the
user namespace since each environment effectively has just
one user. Accounting is also easy since each user have his/her
own cloud account. We can rely on the cloud accounting
service.

We implement both of these styles to compare. We employ
AWS for both of them. We call the multi-user style imple-

mentation CloudQ/M, and single-user style implementation
CloudQ/S.

A. CloudQ/S: Single user style implementation
We utilized AWS ParallelCluster [4] for cluster deployment,

however we had to also use AWS CloudFormation [5] for
VPC creation since ParallelCluster cannot meet our security
requirement. ParallelCluster provides us with the autoscaling
capability, which automatically launches and stops the job
execution nodes. We manage the logs from the agent and batch
queueing system with Amazon CloudWatch Logs [6]. All the
system logs and daemon logs can be browsed and searched
on the AWS console.

This means that CloudQ/S does not have to provide access
from the external network at all. Jobs will be submitted via
cloud storage and the results will be available on the same
place. CloudWatch Logs provides us with enough information
on the status and health of the nodes. Therefore, we can set
up the environment as a completely closed system that does
not have any globally accessible addresses. The enviroment
is disposable. When the cluster is stopped, all the virtual
machines are terminated and any state in the cluster will
be completely disposed. Even if the environment is secretly
compromised, the effect does not last long, since everything
starts from scratch when the user relaunches the environment.

We confirmed that accounting for the single-user style is
quite straightforward as expected.

B. CloudQ/M: Multi-user style implementation
For CloudQ/M, we deploy an execution environment on

AWS, employing PBS as a job scheduler. To manage the whole
structure, we utilize CloudFormation. For user namespace
management, we use LDAP server and sync the namespace
with the on-premise cluster.

For home file system, we use AWS FSx for Lustre [7],
which is a fully managed Lustre service. The FSx for Lustre
supports HSM(Hierarchical Storage Management) [8], which
enables to use S3 as backend storage and seamless access to
S3. This means that the home directory is effectively exposed
as S3 bucket for the outside world, and S3 file system can be
accessed with POSIX interface. It is also useful to reduce the
storage cost to maitain the Lustre file system, since we can
reduce the amount of genuine Lustre files, which is much more
expensive than S3. HSM is quite useful for cloud storage-
based communication. Thanks to HSM, we do not need to
use S3 API directly to implement the agent. Instead, we can
use the POSIX API which is easy to use.

Accounting for CloudQ/M is not simple as in CloudQ/S. We
implemented an accounting monitoring system which monitors
batch queueing system logfile and calculate the usage of all
the users.

V. CONCLUSION

In this paper, we proposed a meta-scheduling system for
secure cloud bursting. CloudQ/M is already deployed on our
site and practically utilized. CloudQ/S is publically available
now.

REFERENCES

[1] S. K. Nair, S. Porwal, T. Dimitrakos, A. J. Ferrer, J. Tordsson, T. Sharif,
C. Sheridan, M. Rajarajan, and A. U. Khan, “Towards Secure Cloud
Bursting, Brokerage and Aggregation,” in 2010 Eighth IEEE European
Conference on Web Services, dec 2010, pp. 189–196.

[2] T. Guo, U. Sharma, T. Wood, S. Sahu, and P. Shenoy, “Seagull: Intelligent
Cloud Bursting for Enterprise Applications,” in Presented as part of the
2012 USENIX Annual Technical Conference (USENIX ATC 12), 2012,
pp. 361–366.

[3] S. Date, H. Kataoka, S. Gojuki, Y. Katsuura, Y. Teramae, and S. Kigoshi,
“First Experience and Practice of Cloud Bursting Extension to OCTO-
PUS,” in 10th International Conference on Cloud Computing and Services
Science, CLOSER2020, 2020, pp. 448–455.

[4] “AWS ParallelCluster,” https://aws.amazon.com/hpc/parallelcluster/.
[5] “AWS CloudFormation,” https://aws.amazon.com/cloudformation/.
[6] “What is Amazon CloudWatch Logs?” https://docs.aws.amazon.com/

AmazonCloudWatch/latest/logs/WhatIsCloudWatchLogs.html.
[7] “Amazon FSx,” https://aws.amazon.com/fsx/.
[8] A. Degrémont and T. Leibovici, “Lustre hsm project,” https://wiki.lustre.

org/images/4/4d/Lustre hsm seminar lug10.pdf, 2009.

