CloudQ;

A Secure Al/HPC Cloud Bursting System

Shinichiro Takizawal, Masaaki Shimizu?, Hidemoto Nakada?,
Hiroya Matsuba?, Ryousei Takano?

1: National Institute of Advanced Science and Technology
2: Hitach Ltd.

Background: Cloud Bursting

On-demand use of cloud environment

Seamlessly utilize both of on-premise and cloud env.
* On-premise
« Process highly sensitive data
» Provide base-line resouce

e Cloud

» Process non-sensitive data
« Allocated on-demand fashion when on-premise resources are not enough

&
’ Cloud

Env.

On-premise
Env.

Requirements

Secure Communication

e Between client and the cloud environment
e ssh is not enough, it is too powerful

Abstract Execution Environment

e The execution environments should look the same, even though
the on-premise and cloud environments are not the same.

Execution Environment Deployment

e Minimize monetary / operational costs
e Manage user name space

CloudQ

Cloud Storage based communication
Containerised job execution environment
Abstract job description

Automatic deployment of the cloud environment

@ =3

Submit Jobs ang
transfer data (p

I ooy >
M Local scheduler
C

Fetch Jobs and Data (get)

Cloud Container
Object _ Repository
Storage

Local scheduler

\ On-premise)

Requirements

Secure Communication

e Between client and the cloud environment

e ssh is not enough, it is too powerful

Abstract Execution Environment

e The execution environments should look the same, even though
the on-premise and cloud environments are not the same.

Execution Environment Deployment

e Minimize monetary / operational costs

e Manage user name space

Job submission via Cloud storage

« Communicate with shared storage

- Both of the client and server periodically
poll the pre specified storage are.

« Advantage

« No incoming port required
« No SSH access required
« SSH provides too much privileges to the user.
* No in-house server implementation
required

« Server implementation is easy, while ‘Secure’
one is really difficult

« Take advantage of Cloud Storage
authentication / authorization mechanism
« Token with automatic expiration
« Easy to manage for administration

©

Requirements

Secure Communication

e Between client and the cloud environment
0 bowerful

Abstract Execution Environment

e The execution environments should look the same, even though
the on-premise and cloud environments are not the same.

¢ ssh is not enough, it is too

Execution Environment Deployment

e Minimize monetary / operational costs
e Manage user name space

Container based environment

« Execution environments are
encapsulated as container
Images

 Local Scheduler downloads
and launches the images and
run the jobs in containers

Local scheduler

 On-premise

Local scheduler

Container
Repository

Abstract Job Description

Abstract

Job Description

>
—

Job
Description ocal scheduler

ocal scheduler

Description

Abstract Job Description

#$ run_on:ANY

#$ project:project01
#$ resource:typel

#$ n_resource:l

#$ walltime:1:00:00
#$ shell:bash

#$ container image: img0=\

. . o Concrete script on ABCI
docker://nvcr.io/nvidia/tensorflow:19.07-py3

#!/bin/bash

#$ -1 rt_F=1

#$ -1 h rt=1:00:00
cloudg cs cp s3://myobjs/data ./data #$ -cwd

wget https://script.is/here train.py

cloudg container run $IMGO python ./train.py data.ssh/
source /etc/profile

Abstract job script source /etc/profile.d/modules.sh
module load aws-cli/2.0 singularitypro/3.5

IMGO=_ IMGO\
singularity pull $IMGO \
docker://nvcr.io/nvidia/tensorflow:19.07-py3

wget https://script.is/here train.py
aws --endpoint-url https://s3.abci.ai \

s3 cp --quiet s3://myobjs/data ./data
singularity exec --nv $IMGO python train.py

rm $IMGO

Requirements

Secure Communication

e Between client and the cloud environment
e ssh is not enough, it is too powerful

Abstract Execution Environment

e The execution environments should look the same, even though
the on-premise and cloud environments are not the same.

Execution Environment Deployment

e Minimize monetary / operational costs

e Manage user name space

Execution Environment Deployment on the Cloud

« Minimize cost
« Monetary cost - launch nodes only when they are actually required
« Operational cost — account tracking / management

« User-name space management

Single-user style
CloudQ/S
i

Multi-user style

Client
Personal Env

Shared
On-Premise env.

Shared
On-Premise env.

Single-user style

« Each user launches his/her own cloud
environment in on-demand fashion.

* No need to manage ‘use space’

* Bills from cloud vender are enough for

accounting management
Personal Env

Shared
On-Premise env.

Overview of CloudQ/S - single-user style

« Based on AWS parallel Cluster
« Automatic Scaling

« Logs are stored CloudWatch Logs
« No login required at all

« Each user is allocated dedicated
AWS account

* Easyto implement
* Easy to track accounting

1) Launch -~
P qsub
Env l

J

Personal Env on the Cloud

2) Submit Jo
And transfer 3) Fetch Jobs and

data (put) Data (get)

Multi-user style

e Establish an environment that mimics
the on-premise environment

« The environment is persistent

« Computation nodes are dynamically
launched/stopped

« User namespace is synchronized with the
on-premise environment

- For accounting some engineering
effort is required get the information

Shared
On-Premise env.

Overview of CloudQ/M - Multi-user style

« Based on AWS CloudFormation
« Runs on single AWS account

« Use FSx for Luster with HSM enabled
« S3 area for job submission can be monitored through

Luster file system

 Implementation is not easy,
especially accounting.

e Strict management of the
users is possible

Hitachi on-premise

AWS

Researcher

Aws cli
(S3 protcol)

Job submit

cloudq format

N
-
using

\

7

ssh/scp

Fook job dispatch to = Awd cli
N\ S3 and submit to
Login node

VPC

AI/HPC Cluster on AWS

i« Login node

Dynamically allocate EC2

1 > W
GPU Large mem
- Nodes Nodes

FSx for Lustre(user home)

e ————————————————————————————————
Home and s3 are synchronized
(After job is executed, data is archived to s3)

Job script

.

| data | Archived home(S3) I
J

Single-user vs. Multi-user

Single-user

« Easy to implement
 Thanks to the ParallelCluster

» Easy to operate
« No extra-effort is required for
accounting
« Disposable environment. Zero-cost for
zero-job
« Except for Cloud strage and logwatch
cost
« Easy to make it secure
« Login capability can be entirely banned

« No globally reachable network interface,
no ssh daemon

Multi-user
« No start-up overhead

« Can provides users with similar
environment to the on-premise

« From administrator perspective, this is
preferable because

« Easy to monitor each user’s activity

Summary
* CloudQ

 Cloud storage-based communication
« Containerized environment

« Abstract job description

« Automatic environment deployment

* CloudQ/S is available

* https://github.com/aistairc/cloudq
« Can be installed via PyPI

* CloudQ/M is in operation in Hitach Ltd.

Thank you

Amazon Web Services and other AWS products are trademark of
Amazon.com,Inc. or its affiliates.

