
CloudQ:
A Secure AI/HPC Cloud Bursting System

Shinichiro Takizawa1, Masaaki Shimizu2, Hidemoto Nakada1,
Hiroya Matsuba2, Ryousei Takano1

1: National Institute of Advanced Science and Technology
2: Hitach Ltd.

Background: Cloud Bursting
On-demand use of cloud environment

Seamlessly utilize both of on-premise and cloud env.
• On-premise

• Process highly sensitive data
• Provide base-line resouce

• Cloud
• Process non-sensitive data
• Allocated on-demand fashion when on-premise resources are not enough

Client

On-premise
Env.

Cloud
Env.

Requirements

Secure Communication
• Between client and the cloud environment
• ssh is not enough, it is too powerful

Abstract Execution Environment
• The execution environments should look the same, even though

the on-premise and cloud environments are not the same.

Execution Environment Deployment
• Minimize monetary / operational costs
• Manage user name space

CloudQ
• Cloud Storage based communication
• Containerised job execution environment
• Abstract job description
• Automatic deployment of the cloud environment

Local scheduler

Local scheduler

Cloud
Object
Storage

Submit Jobs and
transfer data (put)

Cloud

Agent

Fetch Jobs and Data (get)

qsub
Compute Node

On-premise

Agent Compute Node

Container
Repository

Download

Client

qsub

Download

builder

Deploy

Requirements

Secure Communication
• Between client and the cloud environment
• ssh is not enough, it is too powerful

Abstract Execution Environment
• The execution environments should look the same, even though

the on-premise and cloud environments are not the same.

Execution Environment Deployment
• Minimize monetary / operational costs
• Manage user name space

Job submission via Cloud storage
• Communicate with shared storage
• Both of the client and server periodically

poll the pre specified storage are.

• Advantage
• No incoming port required
• No SSH access required

• SSH provides too much privileges to the user.
• No in-house server implementation

required
• Server implementation is easy, while ʻSecureʼ

one is really difficult
• Take advantage of Cloud Storage

authentication / authorization mechanism
• Token with automatic expiration
• Easy to manage for administration Cloud

Object
Storage

ServerClient

Requirements

Secure Communication
• Between client and the cloud environment
• ssh is not enough, it is too powerful

Abstract Execution Environment
• The execution environments should look the same, even though

the on-premise and cloud environments are not the same.

Execution Environment Deployment
• Minimize monetary / operational costs
• Manage user name space

Container based environment

• Execution environments are
encapsulated as container
images
• Local Scheduler downloads
and launches the images and
run the jobs in containers

Local scheduler

Local scheduler

Cloud

Agent

qsub
Compute Node

On-premise

Agent Compute Node

Container
Repository

Download

qsub

Download

Abstract Job Description

Local scheduler

Local scheduler

Cloud

Agent
qsub

Compute Node

On-premise

Agent Compute Node
qsub

Abstract
Job Description

Job
Description

Job
Description

Abstract Job Description
#$ run_on:ANY

#$ project:project01

#$ resource:type1

#$ n_resource:1

#$ walltime:1:00:00

#$ shell:bash

#$ container_image: img0=\

docker://nvcr.io/nvidia/tensorflow:19.07-py3

wget https://script.is/here train.py

cloudq_cs_cp s3://myobjs/data ./data

cloudq_container_run $IMG0 python ./train.py data.ssh/

#!/bin/bash
#$ -l rt_F=1
#$ -l h_rt=1:00:00
#$ -cwd

source /etc/profile
source /etc/profile.d/modules.sh
module load aws-cli/2.0 singularitypro/3.5

IMG0=_IMG0\
singularity pull $IMG0 \

docker://nvcr.io/nvidia/tensorflow:19.07-py3

wget https://script.is/here train.py
aws --endpoint-url https://s3.abci.ai \

s3 cp --quiet s3://myobjs/data ./data
singularity exec --nv $IMG0 python train.py

rm $IMG0

Abstract job script

Concrete script on ABCI

Requirements

Secure Communication
• Between client and the cloud environment
• ssh is not enough, it is too powerful

Abstract Execution Environment
• The execution environments should look the same, even though

the on-premise and cloud environments are not the same.

Execution Environment Deployment
• Minimize monetary / operational costs
• Manage user name space

Execution Environment Deployment on the Cloud
• Minimize cost
• Monetary cost – launch nodes only when they are actually required
• Operational cost – account tracking / management

• User-name space management

Single-user style Multi-user style

Client

Shared
On-Premise env.

Client

Personal Env

Personal Env
Client

Shared
On-Premise env.

Client

Shared
Env.

CloudQ/S CloudQ/M

Single-user style
• Each user launches his/her own cloud
environment in on-demand fashion.

• No need to manage ʻuse spaceʼ

• Bills from cloud vender are enough for
accounting management

Client

Shared
On-Premise env.

Client

Personal Env

Personal Env

Overview of CloudQ/S – single-user style

Cloud
Object
Storage

2) Submit Jobs
And transfer
data (put)

3) Fetch Jobs and
Data (get)

Client

Personal Env on the Cloud

Agent Compute Node

Shared Storage

qsub

Put data

1) Launch
Pesronal
Env

• Based on AWS parallel Cluster
• Automatic Scaling

• Logs are stored CloudWatch Logs
• No login required at all

• Each user is allocated dedicated
AWS account

• Easy to implement
• Easy to track accounting

Multi-user style
• Establish an environment that mimics
the on-premise environment
• The environment is persistent

• Computation nodes are dynamically
launched/stopped

• User namespace is synchronized with the
on-premise environment

• For accounting some engineering
effort is required get the information
form the batch queueing system log Client

Shared
On-Premise env.

Client

Shared
Env.

Overview of CloudQ/M – Multi-user style
• Based on AWS CloudFormation
• Runs on single AWS account
• Use FSx for Luster with HSM enabled
• S3 area for job submission can be monitored through

Luster file system

User pc

VPC

GPU
Nodes

Archived home(S3)

Login node

AI/HPC Cluster on AWS

Large mem
Nodes

FSx for Lustre(user home)

Home and s3 are synchronized
(After job is executed, data is archived to s3)

Job script

ssh/scp

Aws cli
(S3 protcol)

data

Dynamically allocate EC2Aws cli

Researcher

Persistent
data

Hitachi on-premise

Data Copy

AWS

Fook job dispatch to
S3 and submit to
Login node

Job submit using
cloudq format

• Implementation is not easy,
especially accounting.

• Strict management of the
users is possible

Single-user vs. Multi-user
Multi-user
• No start-up overhead

• Can provides users with similar
environment to the on-premise

• From administrator perspective, this is
preferable because
• Easy to monitor each userʼs activity

Single-user
• Easy to implement

• Thanks to the ParallelCluster
• Easy to operate

• No extra-effort is required for
accounting

• Disposable environment. Zero-cost for
zero-job
• Except for Cloud strage and logwatch

cost
• Easy to make it secure

• Login capability can be entirely banned
• No globally reachable network interface,

no ssh daemon

Summary
• CloudQ
• Cloud storage-based communication
• Containerized environment
• Abstract job description
• Automatic environment deployment

• CloudQ/S is available
• https://github.com/aistairc/cloudq
• Can be installed via PyPI

• CloudQ/M is in operation in Hitach Ltd.

Thank you

Amazon Web Services and other AWS products are trademark of
Amazon.com,Inc. or its affiliates.

