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Background: Cloud Bursting
On-demand use of cloud environment

Seamlessly utilize both of on-premise and cloud env.
• On-premise

• Process highly sensitive data
• Provide base-line resouce

• Cloud
• Process non-sensitive data
• Allocated on-demand fashion when on-premise resources are not enough
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Requirements

Secure Communication
• Between client and the cloud environment
• ssh is not enough, it is too powerful

Abstract Execution Environment 
• The execution environments should look the same, even though 

the on-premise and cloud environments are not the same.

Execution Environment Deployment
• Minimize monetary / operational costs
• Manage user name space



CloudQ
• Cloud Storage based communication
• Containerised job execution environment
• Abstract job description
• Automatic deployment of the cloud environment
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Job submission via Cloud storage
• Communicate with shared storage
• Both of the client and server periodically

poll the pre specified storage are.

• Advantage
• No incoming port required
• No SSH access required

• SSH provides too much privileges to the user.
• No in-house server implementation 

required
• Server implementation is easy, while ʻSecureʼ 

one is really difficult
• Take advantage of Cloud Storage 

authentication / authorization mechanism
• Token with automatic expiration 
• Easy to manage for administration Cloud
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Container based environment

• Execution environments are 
encapsulated as container 
images
• Local Scheduler downloads 
and launches the images and 
run the jobs in containers
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Abstract Job Description
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Abstract Job Description
#$ run_on:ANY

#$ project:project01

#$ resource:type1

#$ n_resource:1

#$ walltime:1:00:00

#$ shell:bash

#$ container_image: img0=\

docker://nvcr.io/nvidia/tensorflow:19.07-py3

wget https://script.is/here train.py

cloudq_cs_cp s3://myobjs/data ./data

cloudq_container_run $IMG0 python ./train.py data.ssh/

#!/bin/bash
#$ -l rt_F=1
#$ -l h_rt=1:00:00
#$ -cwd

source /etc/profile
source /etc/profile.d/modules.sh
module load aws-cli/2.0 singularitypro/3.5

IMG0=_IMG0\
singularity pull $IMG0 \

docker://nvcr.io/nvidia/tensorflow:19.07-py3

wget https://script.is/here train.py
aws --endpoint-url https://s3.abci.ai \

s3 cp --quiet s3://myobjs/data ./data
singularity exec --nv $IMG0 python train.py

rm $IMG0

Abstract job script

Concrete script on ABCI
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Execution Environment Deployment on the Cloud
• Minimize cost
• Monetary cost – launch nodes only when they are actually required
• Operational cost – account tracking / management

• User-name space management
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Single-user style
• Each user launches his/her own cloud 
environment in on-demand fashion.

• No need to manage ʻuse spaceʼ

• Bills from cloud vender are enough for  
accounting management
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Overview of CloudQ/S – single-user style
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• Based on AWS parallel Cluster
• Automatic Scaling

• Logs are stored CloudWatch Logs
• No login required at all

• Each user is allocated dedicated 
AWS account

• Easy to implement
• Easy to track accounting



Multi-user style
• Establish an environment that mimics 
the on-premise environment
• The environment is persistent

• Computation nodes are dynamically 
launched/stopped

• User namespace is synchronized with the 
on-premise environment

• For accounting some engineering 
effort is required get the information 
form the batch queueing system log Client
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Overview of CloudQ/M – Multi-user style
• Based on AWS CloudFormation
• Runs on single AWS account
• Use FSx for Luster with HSM enabled
• S3 area for job submission can be monitored through 

Luster file system
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• Implementation is not easy, 
especially accounting.

• Strict management of the 
users is possible



Single-user vs. Multi-user
Multi-user
• No start-up overhead 

• Can provides users with similar 
environment to the on-premise  

• From administrator perspective, this is 
preferable because
• Easy to monitor each userʼs activity

Single-user
• Easy to implement

• Thanks to the ParallelCluster
• Easy to operate

• No extra-effort is required for 
accounting 

• Disposable environment. Zero-cost for 
zero-job
• Except for Cloud strage and logwatch 

cost
• Easy to make it secure

• Login capability can be entirely banned
• No globally reachable network interface, 

no ssh daemon



Summary
• CloudQ
• Cloud storage-based communication
• Containerized environment
• Abstract job description
• Automatic environment deployment

• CloudQ/S is available 
• https://github.com/aistairc/cloudq
• Can be installed via PyPI

• CloudQ/M is in operation in Hitach Ltd.



Thank you

Amazon Web Services and other AWS products are trademark of 
Amazon.com,Inc. or its affiliates.


