
National Institute of Advanced Industrial Science and Technology

Job Invocation Interoperability between

NAREGI Middleware Beta
and

gLite

Hidemoto Nakada (AIST)，，，， Hitoshi Sato（（（（Titech），），），），

Kazushige Saga (NII)，，，， Masayuki Hatanaka (Fujitsu)，，，，

Yuji Saeki (NII)，，，， Satoshi Matsuoka （（（（Titech，，，，NII））））

Background

Recent development of Grid middleware stacks

Globus, UNICORE, NAREGI Middleware, gLite

Some of them are used in production grids

Resources cannot be shared by grids operated
by different middleware stacks

→ Interoperation is required

Grid A: gLiteGrid A: gLite

SiteSite
SiteSite

Grid B: UNICOREGrid B: UNICORE

SiteSite
SiteSite

Background (2)

OGF(Open Grid Forum) GIN-CG

Grid Interoperation Now Community Group

Try to make grid middleware stacks
interoperable using currently available
technologies

Goal

As a part of GIN-CG, perform interoperation
experiments between the following two grid
middleware stacks

NAREGI Middleware Beta

gLite from EGEE

Interoperability

Security Mechanisms

Information Service

Job Submission

Large-scale Data Transfer

Outline

Architecture of the Grid
middleware stacks

NAREGI Middleware beta

gLite

Strategies for interoperation and
implementation

Measurement Results

Conclusion

What are ‘grid middleware stacks’

Assumptions
Each ‘grid’ involves several ‘sites’.
Each ‘site’ has several computers managed by some kind of
‘local scheduler’

Grid middleware stacks
Get job execution request from users and dispatch them to
‘proper’ site, securely.

‘Proper’ - load distribution, Virtual Organization Management
‘Secure’ – Authentication, Authorization

Local schedulers are responsible
for load distribution inside
the sites.

Grid

SiteSite
SiteSite

SiteSite
SiteSite SiteSite

Client

Broker Information
Service

Job
Manager Job

Manager Job
Manager

local
scheduler local

scheduler local
scheduler

General configuration of Grid Middleware
Stacks User submit

jobs
Determines

site to execute
Gathers
info.

Manage
Each site

Batch queuing
system

SGE,PBS,Condor

NAREGI Middleware beta

The second generation of the grid
middleware developed by NAREGI

alpha: developed in 2004
Based on UNICORE

beta: developed 2005 -
Based on WSRF

Conforms OGF standards

Outstanding features

Workflow management

Parallel job execution over multiple sites
Automatic job partitioning and resource allocation

LRPS
LRPS

LRPS

Client

SS IS

GridVM
GridVM

GridVM
local

scheduler local
scheduler local

scheduler

GridVM SC

OGSA-DAI

NAREGI Middleware beta overview

SS (Super Scheduler)
Broker
Workflow engine

IS (Information Server)
Information
aggregation
DB wrapped by
OGSA-DAI

GridVM
Cluster management
Based on GT4
Note: not the ‘real
virtual machine’

Overview of NAREGI Information Service

CIM scheme based
Stores in a DB

Information Collection
LRPS(Local Resource
Provider Service)

Information Aggregation
Aggregator Service

Lookup
OGSA-DAI

WSRF based Data base
access protocol

NAREGI-Middleware-β

LRPS for GridVM

WSRF
Container

DB

GridVM

OGSA-DAI
Service

Aggregator
Service

SS

XML-CIM/
WSRF

Overview of EGEE gLite

Grid middleware stack from EGEE (Enabling
Grids for E-Science in Europe)

Employs Condor modules in several way

Condor
Batch queuing system developed by Wisconsin
Univ.

Brokering based on Condor ‘Match making’

Job submission by Condor-C

Client

WMS BDII

gLite-CE LCG-CE

local
scheduler

local
scheduler

LDAP

Overview of gLite
WMS

Workload
Management System
Brokering based on

‘classad’
BDII (Berkley
Directory Information
Index)

LDAP based
information repository

CE （（（（Compute Element））））
gLite-CE
Complicated module that
use Condor-C
LCG-CE
Globus GRAM2
Carried over from LCG
(LHC Computing Grid)
project

gLite-CE

Condor schedd

GridManager

BLAHPD

local scheduler

WMS
Condor schedd

Condor-C

GRAM client

GRAM
invoke

1

2

script

Job

4

grid
 ftp

Client

3

gLite-CE job Submission Details

Outline

Architecture of the Grid middleware stacks
NAREGI Middleware β
gLite

Strategy for
interoperation and
implementation

Measurement Results

Conclusion

Requirements for mutual job submission

Authentication and Authorization
Interoperation

Security Infrastructure

All the other components relies on it
Crucial for interoperation

Information Service Interoperation

Look up the resources on the other
middleware stack

Job Submission Interoperation

Authentication, Authorization Interoperation

Authentication

‘Who are you’

PKI based authentication is generally used

Authentication

‘What can you do’

Virtual Organization Management

Fortunately, we did not have any issues on
this.

Authentication – GSI is used

Virtual Organization Management - VOMS
NAREGI shares EGEE’s VOMS module

NAREGI-Middleware-β gLite

BDII

CE

LRPS for GridVM

WSRF
Container

DB

GridVM

OGSA-DAI
Service

Aggregator
Service

translator

LRPS
for BDDI

translator

LDIF
XML-CIM/
WSRF

Interoperability for Information Service

Client

Broker

Job
Manager

Client

Broker

Job
Manager

3 ways for mutual job submission

Broker -> JobManager
(relatively) faster
The callee grid policies might
be ignored
Information service
interoperability is mandatory

Broker -> Broker
(relatively) slower
Easy to enforce callee
grid policies

JobManager -> Broker
Slowest
Easy to enforce callee
grid policies

Design of mutual job submission

NAREGI-Middleware-β gLite

SS

GridVM GridVM

local
scheduler

local
scheduler

GridVM SC

Client

WMS

gLite-CE LCG-CE

local
scheduler

Client

local
scheduler

Where to have bridges?
Points that have standard
interface are preferable

Library is available

Interface is defined
and published

Proprietary interface

Client

WMS BDII

LCG-CE gLite-CE

local
scheduler

local
scheduler

LDAP

Client

SS

GridVM
GridVM

GridVM

local
scheduler local

scheduler local
scheduler

GridVM SC GRAM2 SC

NAREGI-Middleware-β gLite

NAREGI→gLite

NAREGI→gLite

Developped a SC that calls LCG-CE(GRAM2)
instead of GridVM

SCs are designed as dynamically loadable
independent modules

Problem: GRAM2 does not provide
reservation capability

Solution : SC just pretend to make reservation

Automatic selection of SC, based on
information provided by the information
service

Hidden from users

NAREGI-Middleware-β gLite

Client

SS

GridVM
GridVM

GridVM

local
scheduler local

scheduler local
scheduler

GridVM SC

Client

WMS BDII

Modified
gLite-CE

LCG-CE

local
scheduler

LDAP

gLite -> NAREGI

gLite-CE

Condor schedd

GridManager

BLAHPD

local scheduler

WMS
Condor schedd

Condor-C

GRAM client

GRAM
invoke

1

2

script

Job

4

grid
 ftp

Client

3

Implementation details

gLite-CE

Condor schedd

GridManager

BLAHPD

WMS
Condor schedd

Condor-C

GRAM client

GRAM
invoke

1

2

Client

3

Implementation details

SS

GridVM

local scheduler

script

Job

grid
 ftp

BLAHP Protocol

Text-based protocol for intermediate
processes

Based on GAHP, with command set

GAHP(Globus Ascii Helper Protocol) – initially
desinged to call Globus modules from Condor

Based on UNICORE GAHP（（（（Nakada ‘04））））
Command set

BLAH_JOB_SUBMIT

BLAH_JOB_STATUS

BLAH_JOB_CANCEL

We could ‘reuse’ UNICORE GAHPD codes

Problems solved (1)

File staging to NAREGI failed because gLite-CE uses
virtual users on the node

Create a readable temporary directory for each job and
copy the files there

gLite-CE

Condor schedd

GridManager

BLAHPD

WMS
Condor schedd

Condor-C

GRAM client

GRAM
Invoke

1

2

Client

3SS

GridVM

local scheduler

script

Job

grid
 ftp

nakada

nakada

nrggin02

nakada

nakada

nakada

Problems solved (2)

Limitation for proxy certificates delegation
times

Proxy certs. – uses intermediated CA
mechanism internally

Theoretically, there is no limitation for
delegation times

Gridftp implementation by Globus has a bug
openssh library used in Globus had the default
limitation number of intermediate CAs

Can be easily fixed

Solution
Patched the gridftp

Outline

Architecture of the Grid middleware stacks

NAREGI Middleware β

gLite

Strategies for interoperation and
implementation

Measurement Results

Conclusion

Experiments

Measured elapsed time for mutual job
submission.

Also measured job submission with in each
middleware stacks

Average time of 10 measurements

Environment

All the nodes are located in a NAREGI
campus

Experimental results

Setups
Pentium 4 Xeon 3GHz dual, Mem. 1Gbyte, RedHat 8
Network 1000base-T

gLite-ClientNMB-Client

LCG-CEgLite-CEgridVM

484s

250s
284s66s 134s

Outline

Architecture of the Grid middleware stacks

NAREGI Middleware β

gLite

Strategy for interoperation and
implementation

Measurement Results

Conclusion

Conclusion

Performed job submission interoperation
experiments between NAREGI Middleware
beta and EGEE gLite

No issues on certs. and VO management

Differences in information service layer
could be managed

Mutual job submission could be successfully
performed with proper bridging modules

Future Work

Precise measurement and analysis

Experiments on Production systems

Confirm interoperability using VOMS in
production

Investigate effects of latency between
Japan and Europe

More sophisticated mutual job submission

Having NxN bridges are not good idea

To have standardized Job submission
interface will be the best

Thank you

Acknowledgement:
A part of this research was supported by a grant
from the Ministry of Education, Sports, Culture,
Science, and Technology (MEXT) of Japan through
the NAREGI (National Research Grid Initiative)
Project.

