
Job invocation interoperability between NAREGI Middleware Beta and gLite

Hidemoto Nakada
National Institute of Advanced Industrial

Science and Technology (AIST)
1-1-1 Umezono, Tsukuba, 305-8568, Japan

hide-nakada@aist.go.jp

Hitoshi Sato
Tokyo Institute of Technology,

2-12-1 Ookayama, Tokyo, 152-8550, Japan
hitoshi.sato@is.titech.ac.jp

Kazushige Saga
2-1-2 Hitotsubashi, Tokyo 101-8430, Japan

saga@grid.nii.ac.jp

Masayuki Hatanaka
140 Miyamoto, Numazu 410-0396, Japan

hatanaka@soft.fujitsu.com

Yuji Saeki
2-1-2 Hitotsubashi, Tokyo 101-8430, Japan

ysaeki@grid.nii.ac.jp

Satoshi Matsuoka
Tokyo Institute of Technology,

2-12-1 Ookayama, Tokyo, 152-8550, Japan
matsu@is.titech.ac.jp

Abstract

As grid middleware stacks mature, the importance of
inter-operation among them is getting more significant.
There is a community group called GIN (Grid Interoper-
ation Now) in the OGF (Open Grid Forum), a standard-
ization body for grid related technologies, which aims to
establish interoperation among several grid middlewares.
We performed experiments on inter-operation between our
NAREGI Middleware beta and EGEE gLite, as a contribu-
tion to the group. For the experiments, we implemented sev-
eral modules to allow information exchange and mutual job
submissions. As the results of the experiment, we confirmed
the followings: 1) The security layer, such as certificates
and virtual organization management, imposes no funda-
mental difficulties despite the subtle diffrences in the useof
proxy certificates, 2) While information services differs sub-
stantially, the resource information can be translated to al-
low effective information exchange via schema translation
between GLUE and CIM, 3) Jobs can be mutually submit-
ted based on the exchanged information, despite the differ-
ences in job description languages and interfaces (JSDL vs.
JDL).

1. Introduction

The concept of grid, connecting distributed resources
for higher utilization, is getting widely understood and ac-

cepted. There are a variety of grid middleware stacks pro-
posed, and used to actually manage grids. However, most
of them can not interoperate with each other, preventing us
from fully leveraging the concept of ’grid’. There are sev-
eral possible causes that hinder interoperation amongst the
diverse grid middleware stacks including: 1) differences in
the security layer, 2) differences in the resource information
schema and notation format, 3) differences in the commni-
cation protocols. For further growth and dissemination of
the grid technology it is crucial to establish interoperation
technology among various grid middleware stacks.

A community group in the OGF (Open Grid Forum,
a standardization body for grid related technologies) [10],
called GIN(Grid Interoperation Now) [11], is formed aim-
ing to establish interoperation technologies among several
grid middleware stacks and feedback the experience to the
standardization groups.

We show the details of an experiment on interoperation
between NAREGI Middleware Beta and EGEE [4] gLite
[6, 5], which was performed as a contributory research
and experiment to the community group. There, we accom-
plished job submission interoperability from NAREGI Mid-
dleware Beta to gLite and from gLite to NAREGI Middle-
ware Beta. We enabled the former by (effectively) turning
gLite Computing Elements into NAREGI Middleware Beta
resources so that they can be allocated by the NAREGI Mid-
dleware Beta brokering system. We enabled the latter by
exposing whole NAREGI Middleware Beta as one of the
Computing Elements of gLite.

���������	��
������������������������ ��������� ���������������������� ������������� �������������
Figure 1. Generic configuration of Grid mid-
dlewares

We confirmed the followings through the experiments:
1) the two middleware can interoperate each other in terms
of security infrastructure, such as certificates and virtual or-
ganization management, despite the minor differences in
how proxy certificates are used, 2) information services of
them can be bridged with intermediate modules with effec-
tive schema translation between GLUE schema employed
by gLite and CIM-based schema employed by NAREGI,
and 3) jobs can be submitted from one to another via bridg-
ing modules, despite the differences in job description lan-
guages and interfaces (JDL vs. JSDL).

2. Generic Grid Middleware Configura-
tion and Interoperation

Figure 1 shows the generic configuration of a grid mid-
dleware stack: it consists ofbrokers, job managersand in-
formation services. Job managers reside on every site that
provide compute resources and act as a bridge to the back-
end local schedulers. Information service gathers variousin-
formation, such as load average or queue length, from each
site and provides them to the broker, based on a certain in-
formation schema. The broker receives job submission re-
quests from users, describes in term of a job description lan-
guage, and finds compute resources suitable for executing
the job based on the information provided by the informa-
tion service, and forward the job submission request to the
job managers running on the compute resources. The job
managers pass the jobs to the backend local schedulers so
that they are executed. All the communications among the
modules has to be properly authenticated and authorized.

Overall, to enable inter-grid middleware job submission,
we need to accomplish the followings: 1) security infras-
tructure interoperation, 2) information service interopera-
tion, and 3) job submission interoperation.

 !"#$%&'()#'*+,-./.012 !"#$%&'()#'*+,-./.012
Figure 2. Job Manager Level Interoperation.3456789:;<6:=>?@ABACDE 3456789:;<6:=>?@ABACDE

Figure 3. Broker Level Interoperation.

For job submission interoperation, there can be two ba-
sic strategies; job manager level interoperation and broker
level interoperation. With the former strategy, the broker
of the requester middleware stack will submit jobs to the
job manager of requestee middleware as shown in figure 2．
With this strategy, since the broker of the requester middle-
ware stack determines which compute resource to execute
the job, the broker of the requestee middleware loses con-
trol over which resource should be used.

With the latter strategy, the broker of requester middle-
ware will submit jobs to the broker of the requestee middle-
ware as shown in figure 3. The jobs will go through both
of the brokers, leading to better managebility at the expense
of more complexity and possible performance overhead of
dual brokerings.

3. NAREGI Middleware Stack Overview

NAREGI Middleware Beta is a grid middleware stack
that is designed focusing on co-allocation of resources from
multiple-sites and execution of complex workflow of jobs.
While the first incarnation of the middleware, which is
calledalpha [17] was based on UNICORE [13], thebeta,
the second incarnation, is based on WSRF [14] and Globus
Toolkit 4 [16]. The most notable characteristic is its early
adoption of emerging standards mainly from OGF.

The execution resource management portion of
NAREGI Middleware Beta is composed of several mod-
ules including the followings three primary modules. (Fig-
ure 4)

2

• Super Scheduler (SS)
The Super Scheduler is responsible not only for bro-
kering jobs but also resource co-allocation and work-
flow execution. Each Virtual Organization in the grid
will manage one or more SS(es), and its member users
create workflows and submit them to the SS. SS in-
terprets the workflows, finds jobs that can be executed
at the point, finds the appropriate resources communi-
cating with IS (Information Service) described below,
makes reservations for the jobs communicating with
the GridVM below on the found resource, and sub-
mit the jobs to the GridVM. If co-allocation spanning
over several sites is needed, the SS will automatically
find commonly available timeslot for all the sites and
makes reservation on the sites.

• GridVM 1

GridVM is a module that is responsible for manage-
ment of computation resources in a site, correspond-
ing to the “Job Manager” described in the previous
section. It wraps around a local batch queuing sys-
tem and Globas Toolkit 4 GRAM, supporting the JSDL
(Job Submission Description Language) [9] defined by
OGF, adding advance reservation interface for the Su-
per Scheduler. It is also responsible for resource con-
sumption control in computer resources, and collecting
and notifying resource usage information for account-
ing.

• Information Service (IS)
NAREGI IS (Information Service) is a framework to
aggregate and provide resource information, based on
WSRF. All the resource information are represented in
an extension of the CIM [1] schema, which is defined
by DMTF [3], which is a standardization body for re-
source representation. The information is stored in the
backend relational database. IS provides Information
retrieval interface based on OGSA-DAI [12], which
is a standardized database access protocol from OGF,
and information update protocol based on WSRF. A
module called LRPS (Local Resource Provider Ser-
vice) is responsible for updating the information of
each resource.

4. gLite Overview

GLite is a grid middleware that is developed by the
EGEE (Enabling Grids for E-Science in Europe) project,
and widely deployed amongst almost 50 European and

1 GridVM is a very thin layer of abstraction for job submission and ex-
ecution, and is not a full-fledged virtual machine like Xen where OS
environments are virtualized

FGHI FGHIFGHI
JKLMNOPP QR

STUVWXSTUVWXSTUVWXYZ[\Y][̂ _V̀ Y_T YZ[\Y][̂ _V̀ Y_T YZ[\Y][̂ _V̀ Y_T
abcdefgh ijklmnlo

Figure 4. NAREGI Middleware beta overview.

other countries. GLite is composed of several modules in-
cluding the followings:

• WMS (Workload Management System)
WMS is a brokering module for gLite. It receives job
submission requests from users and queries resource
status to BDII, described below, and based on the re-
source information it allocates resources to jobs. For
brokering, it uses ClassAd [20], based matchmaking
that is originally proposed and introduced by Condor
Project [2].

• BDII (Berkeley Directory Information Index)
BDII is the information service module for gLite,
which provides information access interface based on
LDAP (Light-weight Directory Access Protocol) [21].
As the data schema for the stored resource informa-
tion, it employs the GLUE schema [8] , which is a sim-
pler, higher-level abstraction compared to CIM, being
more specific to grid properties rather than being de-
tailed and comprehensive as is with CIM

• CE (Computing Element)
This is the job manager module for gLite. As a job de-
scription language it supports its own JDL (Job De-
scription Language) format, different from the JDSL
standard.

There are two incarnations of CE, namely LCG-CE
and gLite-CE, which have totally different architec-
ture. The LCG-CE is a carried-over module from the
sister project to EGEE called LCG (LHC Computing
Grids), which is supported for backward compatibil-
ity purpose. Effectively, it is a pre-WS GRAM [15] of
the Globus Toolkit．The gLite-CE, which is a new tai-
lored module for gLite, is a complex module that uses
Globus pre-ws GRAM protocol and the Condor sub-
mission protocol at the same time.

3

pqrstuvwx yz{{|}~����� }������������������� ��������������
����

Figure 5. gLite overview.

��������������� ¡¢��£�¤�¥¦�¦§¢�©̈ª«¬®̄ °±®²°³́µ¶®́ ·
¹̧º������� ¡¢��������»�£¼ª¥ ½¤¢�¾£¼ª¥¤�¿�À¢

ÁÂ
²°·ÃÄÅǢÇ

ÈÉÊËÌÍÎÏ
Ð®Ã́ ÑÅ Ò

Figure 6. Job Execution in gLite CE.

4.1. Job execution with gLite-CE

GLite-CE uses a job submission protocol called Condor-
C. Condor-C is a way to delegate job execution from
one Condor schedd (scheduler daemon) to another Con-
dor schedd. In gLite-CE, there is a Condor schedd on the
node which is responsible for receiving job execution re-
quest from another schedd installed in the submission
client. The schedd in gLite-CE execute the job using the lo-
cal scheduler, such as PBS or LSF, via daemons called
GridManager and BLAHPD, which will be described be-
low. To invoke the schedd on for each user on gLite-CE
node, the pre-WS GRAM protocol is used, to cover the as-
pect of grid security.

BLAHPD is a module to provide abstract interface for
local batch queuing systems, such as PBS or LSF. The in-

terface is text-based and simple to implement. It hides the
details of each interface of the backend batch queuing sys-
tem.

There are two notable characteristics for gLite-CE. One
is that, it uses ’virtual user’ as the local executing user ac-
count for daemons and jobs for each grid user. In more de-
tail, it has a pool of virtual user accounts and allocates one
of the pooled accounts when it gets a request from a grid
user. This means that administrator does not have to cre-
ate a local user account for each grid user at every site, as is
done for Globus with gridmap files

Another point is that, the submission script passed to the
local batch queuing system is not to directly exeucte the bi-
nary of the job submitted by the grid user, but rather a boot-
strap; i.e., the script will access the client node and stage
the real executable file and input data, execute it, and then
send back the result to the client. The script expects to find a
common supporting environment on the execution node, in-
cluding GridFTP and several gLite specific commands and
libraries.

Figure 6 shows the execution steps with gLite-CE.

1. Users submit their jobs from client node using submit
command into the WMS.

2. WMS allocates a site to execute the job based on re-
source information obtained from BDII, invoke schedd
on the site using the pre-WS GRAM protocol.

3. WMS submits the script described above into the
schedd on CE using Condor-C protocol. The script
will be passed to the backend queuing system via Grid-
Manager and BLAHPD.

4. The script downloads the executable and input files
from the client using GridFTP, executes the executable,
and uploads the result.

5. Interoperation Strategy

5.1. Security Infrastructure Interoperation

The security infrastructure is the base of all communica-
tion and other activities of the middleware stacks and its
interoperability is crucial. Both of NAREGI Middleware
Beta and gLite authenticate users and resources based on
X.509 certificates issued by their certificate authorities.Op-
erationally, both of their certificate authorities actually be-
long to PMA (Policy Management Authority) of IGTF (In-
ternational Grid Trust Federation), enabling automatic in-
teroperation of their certificates.

Another possible obstacle would be VO (Virtual Organi-
zation) management interoperability. Fortunately, NAREGI
Middleware Beta is using the VOMS (Virtual Organization

4

ÓÔÕÖ×ØÙÚÛÜÜÝÞßàáÞÙâ ãäÛåÞ
æçèèéêëìíîïðñòñóôõö

÷îìøéðùúûóùüñçæ
òñóôõö
ýþÿ�����ÿ�������		��	
���ÿ������ ��������ëìíîïðñ�������������çè��������� !"#

Figure 7. Information Service Interoperation.

Membership Server) developed by gLite, effectively avoid-
ing this possible obstacle. NAREGI middleware acutally in-
volves additional layer of signing distinguishing the login
session of the user of the grid from the actual workflow sub-
mission instances of each user, the latter requiring an extra
layer of signing. Fortuantely, the certificate delegation em-
ployed by Globus GSI is not affected by this extra layer as
it is merely another delegation step.

5.2. Information Service Interoperation

Since the information services for NAREGI Middleware
Beta and gLite have different resource information schema
(CIM vs. GLUE), different data format (CIM-XML vs.
LDIF), and different data transfer protocols (OGSA-DAI
vs. LDAP query), some intermediate modules are required
to enable interoperation between these two information ser-
vices, as shown in [18]. We developed two modules for
this purpose, as shown in figure 7. The two modules shown
in the figure is the intermediate modules. The upper one
pulls information out from NAREGI Middleware Beta and
pushes it into gLite, and the lower does the inverse, while
translating the schema in between.

The upper componet is implemented as a stand alone
translator module, which is activated periodically, retrieves
CIM formatted information from Information Service, con-
verts them into GLUE schema, formats them with LDIF,
and stores them into BDII with LDAP protocol.

The lower component is implemented as a LPRS, which
is one of the sub modules composing the NAREGI Infor-
mation Service. It is also periodically activated, retrieves
GLUE schema information from CIM with LDAP protocol
from BDII, convert it into CIM schema. It compares them
with the information previously retrieved and finds data that
are updated since previous retrieval. If there are any updated
data, the module ’notifies’ Aggregator Service, which is an-
other module composing the Information Service, with the
WS-notification protocol. The Aggregator Service, in re-
sponse to the notification, retrieves the updated information,

$%&'()*+, -.//012314 506783149:;<9=;>8?@98A 9:;<9=;>8?@98A
BCDE$%&'(),,2A6?FG2A6?FG2A6?FG9:;<9=;>8?@98A 9:;<9=;>8?@98A 9:;<9=;>8?@98A

HIJKLMNO HPDMQNO
RSTUVWXYZ[[\]̂_̀]Xa bcZd]

Figure 8. Job Submission from NAREGI Mid-
dleware Beta to gLite.

sending retrieval message to the LPRS, and stores them to
the backend database.

5.3. Job Submission Interoperation

There are two possible ways as shown in section 2 to re-
alize job submission interoperation. We investigated the im-
plementation of the two middleware stacks, and determined
to employ a hybrid approach; we employ job manager level
interoperation for job submission from NAREGI Middle-
ware Beta to gLite, and broker level interoperation for job
submission from gLite to NAREGI Middleware Beta.

6. Job Submission from NAREGI Middle-
ware Beta to gLite

As mentioned above, we employed job manager level
interoperation for this, because gLite LCG-CE is effec-
tively equivalent with the well-known pre-WS GRAM from
Globus Toolkit, so the support of the protocol was straight-
foward. Figure 8 shows the overview of the implementa-
tion. Here we setup a path to the LCG-CE in parallel with
the path to the GridVM.

In SS, there are modules called SC (Service Container)
that abstract the external modules such as GridVM. The
SCs act as abstract proxies for external modules. We im-
plemented a SC for LCG-CE for interoperation. An SS has
to know which SC is to be used for each specific site, based
on the running modules there. IS provides information for
this.

NAREGI Middleware Beta assumes that all the lower
modules can handle advance reservation request and per-
forms scheduling based on reservations,2 while LCG-CE

2 This restriction will be lifted for the official version 1.0release, allow-
ing mixture of reserved/non-reserved grid jobs, as well as non-grid
jobs submitted from the side

5

efghijklmnnopqrspkt uvmwp
xyz{|}~~�������������������������������� �������������� ��������������

�������� xyz{|}��~ ������������������� ����� ��������������
¡¢£¤

Figure 9. Job Submission from gLite to
NAREGI Middleware Beta.

does not support advance reservation. We implemented a
‘facade’ advance reservation interface on the SC for LCG-
CE. The SC always answers ’success’ for requests for ad-
vance reservation on the resource, while it actually just sub-
mits jobs to the ordinary queue. With this implementation,
we could accomplish the interoperability without changing
the core logics in the SS.

7. Job Submission from gLite to NAREGI
Middleware Beta

7.1. The Design

The gLite job submission path is designed to be easy
to modify by the the use of the BLAHPD, the mecha-
nism e employed in order to accomplish the interoperabil-
ity. We implemented a BLAHPD that acts as a bridge to the
NAREGI Middleware Beta. The BLAHPD receives a job
submission request from schedd and instead of forwarding
it to backend batch queuing system, which is the behavior
of the normal BLAHPD, it forwords the job into NAREGI
Middleware Beta, as shown in figure 9

The modified BLAHPD uses certificates delegated
through the gLite invocation path to submit jobs to
NAREGI Middleware Beta. The Condor schedd mod-
ule in gLite-CE creates certificate files and passes the paths
of the files to the modified BLAHPD, embedding them
as environment variables. The BLAHPD reads the speci-
fied files and puts them into the MyProxy server. The client
library for NAREGI Middleware Beta uses the certifi-
cate for further operation, i.e., submission and monitoring
of the job.

7.2. Implementation of NAREGI BLAHPD

BLAHP is one of the variations ofGAHP [7] which
is a text protocol used in Condor to communicate with

Name BLAH JOB SUBMIT
Request BLAH_JOB_CREATE <req id> <job classad>
Return <S|E>
Result <req id> <S|F> <error string>

<job handle>
Desc. Creates a job handle for specified job, and starts it.

Returns the job handle.

Name BLAH JOB STATUS
Request BLAH_JOB_STATUS <req id> <job handle>
Return <S|E>
Result <req id> <S|F> <error string>

<job status int> <result classad>
Desc. Returns status of a job which is specified by the job handle

as a ClassAd

Name BLAH JOB CANCEL
Request BLAH_JOB_CANCEL <req id> <job handle>
Return <S|E>
Result <req id> <S|F> <error string>
Desc. Cancels a job specified by the job handle, and releases

resources related to the job.

Table 1. BLAHP Command Set

other grid middleware components, such as Globus Toolkit
GRAM. The GAHP defines the format of requests and
replies, how they interact, and how data should be mar-
shaled. BLAHP uses GAHP as the transport protocol and
adds concrete command set to be used within the protocol.
We show the command set in figure 1.

The BLAHP command set is similar to that of the UNI-
CORE GAHP, which was implemented by ourselves in our
previous work [19]. We implemented BLAHP for NAREGI
Middleware Beta modifying the UNICORE GAHP server,
which is written in Java. For job submission to NAREGI
Middleware Beta, we used Java client API.

7.3. Issues Encountered

7.3.1. Virtual User Mapping As mentioned in 4.1, gLite
CE uses virtual users as the executing UNIX user accounts,
while NAREGI Middleware Beta uses the traditional grid
user to local user Id mapping via Globus gridmap files, and
does not support the concept of virtual users. This causes
several problematic issues, such as staging files including
the executables, onto compute nodes that are administered
by the NAREGI Middleware (beta).

In NAREGI Middleware Beta, file staging are initiated
by the SS, usingglobus-url-copyunderneath to stage files
from client sites to target sites, which is managed by Grid-
VMs. GridFTP usually uses the Globus grid map file to map
certificate DN into UNIX user and for proper authorization.
The problem occurs when SS tries to stage files that belong
to a virtual user using certificate. The grid map file on the

6

¥¦§̈©ª«¬®̄°®±²³́µ°°¶±·°̧ ¹̄¹ºµ±»¼½¾¿À
ÁÂÃ®̄°®±²³́µ°°®̄°®±Ä¶Å½̧ ³Æ·µ̄Ç¶Å½̧ ·̄ È®Éµ

ÊËÌÍÎÏ
ÃÃÐÑÒÓÔÕËÖ×ØËÙ×ÚÍÛÜËÍÝÙ×ÝÌÞÏßÖà

áâãäåæç
èéêéëé

èìííîèïð
èéêéëéèéêéëéèéêéëé

èéêéëé ñòòóôõ

ñòòóôö

Figure 10. Details of gLite-NAREGI Middle-
ware Beta job submission.

CE node, which is also acting as NAREGI Middleware Beta
client node, will naturally not include thin mapping. Fig-
ure 10 shows the details of the job submission from gLite
to NAREGI Middleware Beta. The small tags attached to
the components at right-lower corner denote the UNIX user
name recognized therein. Here, note that, in the glite-CE,
the original user “nakada” no longer is valid, and replaced
for a virtual user “nrggin02”, which naturally is not recog-
nized. This causes GridFTP failure between the gLite-CE
and the GridVM.

There are several possible strategies to cope with this
problem. The ideal way to handle this is to dynamically up-
date the grid map file on the CE node with the user DN
and the allocated virtual user. Less ideal but easer way is
to dynamically create a directory that can be world acces-
sible, and copy the contents of working directory to and
from the directory. While world accessible directory may
cause serious security problem in general, only a tiny script
gLite could generates would use this directory in reality,
on a time-limited basis—once the file is transferred, a copy
would be made to an appropriate private directory, making
the window of security bleach be very small. Because of
limited time, we employed the latter strategy, but in the fu-
ture we will likely employ the former approach.

7.3.2. Limitation in the number of possible delegations
in GridFTP During the experiment, we found a ‘bug’ in
the GridFTP server implementation in the Globus Toolkit,
which is used in both middleware stacks. The bug effec-
tively limits the number of times a certificates can be dele-
gated to just eight.

Client\ Server gLite-CE LCG-CE NAREGI

gLite 250 284 487
NAREGI N/A 134 66

Table 2. Elapsed Time(sec.)

Since both middleware stacks leverage certificate dele-
gation , and in particular job submission path from gLite
to NAREGI Middleware Beta goes through both middle-
ware stacks, and as a result, NAREGI Middleware Beta
executable nodes receive certificates delegated more than
8 times, resulting in a failure of GridFTP between the
gLite client node and NAREGI Middleware Beta executable
nodes. The ’Issue 2’ tag in figure 10 denotes the place where
this happens. To cope with this problem, we had to fix
GridFTP so that it accepts such certificates with long del-
egation paths.

8. Experimental Evaluation

To test the viability and the performance of the inter-
operation modules, we performed a controlled experiement
within a testbed created locally within NAREGI for inter-
operation testing.

We set up groups of nodes with gLite version 3.0.2 and
NAREGI Middleware Beta with the interoperation module
we developed properly installed and submitted jobs from
one to another. We installed the modules of two middle-
ware stacks so that each module occupies one host. All the
hosts have the same basic configuration; i.e. dual Pentium 4
Xeon 3GHz, 1G byte Memory, RedHat 8 Linux, intercon-
nected with a 100 base/TX network. GLite uses TORQUE
and NAREGI Middleware Beta uses PBS professional as
backend queuing systems.

We have measured the job submission latency for a job
that executes ’hostname’ command on the executing server
and returns a result string. Since the job execution itself is
negligible, the latency directly shows the middleware over-
head. We also measured job submission confined within the
respective middleware stacks for comparison.

Table 2 shows the result of the experiment. The exper-
iment had been repeated 10 times and the average time
is shown here. Please note that both of the middlewares
require polling to detect the completion of job execution.
Since we set up the polling interval as 10 seconds, the num-
bers shown in the table have error within 10 seconds.

From the table, we can see that the case from gLite
to NAREGI Middleware Beta is the slowest likely due
to the long execution path that goes through both broker-
ing systems. We also observe that all submission times

7

are comparable gLite - LCG-CE submission, which is de-
ployed widely in production and shown to handle more than
100,000 jobs per day. In fact, as one can observe, NAREGI -
LCG-CE submission is faster, despite the interoperation. As
such, we claim that our interoperation design does not add
overhead that would render the system unusable in practice
in terms of performance — a promising performance num-
ber for true global grid interoperation.

9. Conclusion

We performed interoperation experiments between
NAREGI Middleware Beta and EGEE gLite and con-
firmed the followings: 1) there are no issues regarding
the certificates and VO management layer 2) in informa-
tion services, there are substantial differences as note but
this can be alleviated with approrpriate schema/format con-
version, 3) in job submission, by careful design that would
exploit the properties of respective middleware and devis-
ing an appropriate architecture for each path in the job sub-
mission amongst the components, we confirmed that it is
possible to submit jobs from one to another with realis-
tic performance.

We have several future work including:

• The experiments shown in this paper was performed
within the NAREGI site in a controlled fashon so as
to exclude the effects come from real distributed en-
vironment, such as long latency or poor network sta-
bility. The next step is to design and perform experi-
ments with Japan and European sites using large-scale
(pre) production infrastructure resources.

• The gLite assumes that all the jobs executing host can
access to the gLite executing environment, i.e., several
libraries and commands, such as GridFTP, Also it as-
sumes that an executing host would have direct access
to the client node, which is not usual in a restricted grid
environment. While for experimentation we installed
gLite executing environment on all the NAREGI hosts
for this experiment, we do not believe that such de-
pendence on the availability of middleware stack spe-
cific commands would be feasible for multi-tier inter-
operational settings. We need to investigate some other
way to avoid the installation of gLite executing envi-
ronment on each execution node of NAREGI Middle-
ware Beta, such as the use of virtual machines to ship
the entire operational environment in a closed, self-
consistent fashion.

Acknowledgement

A part of this research was supported by a grant from the
Ministry of Education, Sports, Culture, Science, and Tech-
nology (MEXT) of Japan through the NAREGI (National
Research Grid Initiative) Project.

References

[1] Common Information Model.
http://www.dmtf.org/standards/cim/.

[2] Condor. http://www.cs.wisc.edu/condor/.
[3] Distributed Management Task Force.

http://www.dmtf.org/search.
[4] EGEE: Enabling Grids for E-SciencE. http://www.eu-

egee.org/.
[5] EGEE Middleware Architecture and Planning. Technical Re-

port DJRA1.4, EU Deliverables.
[6] gLite: Lightweight Middleware for Grid Computing.

http://glite.web.cern.ch/glite/.
[7] Globus ascii helper protocol.

http://www.cs.wisc.edu/condor/gahp/.
[8] GLUE Schema. http://glueschema.forge.cnaf.infn.it/.
[9] Job Submission Description Language (JSDL) Specification.

Open Grid Forum, GFD.56.
[10] Open Grid Forum. http://www.ogf.org.
[11] Open Grid Forum Grid Interoperation Now Community

Group. https://forge.gridforum.org/sf/projects/gin.
[12] The OGSA-DAI Project. http://www.ogsadai.org.uk/.
[13] Unicore. http://www.unicore.org/.
[14] Web Services Resource Framework. http://www.oasis-

open.org/committees/wsrf.
[15] K. Czajkowski, I. Foster, C. Kesselman, N. Karonis, S. Mar-

tin, W. Smith, and S. Tuecke. A resource management ar-
chitecture for metacomputing systems. InProc. IPPS/SPDP
’98 Workshop on Job Scheduling Strategies for Parallel Pro-
cessing, 1998.

[16] I. Foster. Globus toolkit version 4: Software for service-
oriented systems. InIFIP International Conference on Net-
work and Parallel Computing, Springer-Verlag LNCS 3779,
pages 2–13, 2005.

[17] S. Matsuoka, M. Hatanaka, Y. Nakano, Y. Iguchi, T. Ohno,
K. Saga, and H. Nakada. Design and implementation
of naregi superscheduler based on the ogsa architecture.
21(4):521–528, July 2006.

[18] M.Gønager , et.al . LCG and ARC middleware interoperabil-
ity. In Proceedings of CHEP 2006, number 348, 2006.

[19] H. Nakada, J. Frey, M. Yamada, Y. Itou, Y. Nakano, and
S. Matsuoka. ”design and implementation of condor-unicore
bridge”. In ”Proceedings of HPC ASIA 2005”, pages 307–
314, 2005.

[20] R. Raman, M. Livny, and M. Solomon. Matchmaking: Dis-
tributed resource management for high throughput comput-
ing. In Proc. of HPDC-7, 1998.

[21] M. Wahl, T. Howes, and S. Kille. Lightweight directory ac-
cess protocol (v3). RFC 2251.

8

