
Autonomically-Adapting Master-
Worker Programming Framework
for Multi-Layered Grid-of-Clusters

Hitoshi Aoki1, Hidemoto Nakada2,
Kouji Tanaka3, Satoshi Matsuoka1,4

1.Tokyo Institute of Technology
2. National Institute of Advanced Industrial

Science and Technology (AIST)
3.Waseda University

4.National Institute of Infomatics

� Grid : cluster of clusters
� Each cluster is managed by some queuing system

�PBS, Grid Engine, Condor
�Availability of nodes depends on the administration

policy
�Available node set will change dynamically

Background

Login Node Login Node

Site BSite A

Job Submission Job Submission
Available till

PM9

Background

�Master-Worker style programming
�Latency tolerant

�Fault tolerant

�Lot of problems can be mapped on to this
style
�Genetic algorithms

�Branch and bound method

�Parameter sweep

Background

� Several globally distribute grid middleware
are proposed
�BOINC / Condor type

�Robust
�Very Course Grained

• Not suitable for fine-grained master-worker

�MPI type
�High speed

• Can map fine-grained master-worker

�Fragile
• Even though the programming style itself is robust, with

MPI you cannot leverage the robustness
• Cannot add / remove participating nodes dynamically

Goal

�Propose a grid middleware and
programming framework suitable for
master-worker style, that can leverage
existing general grid configurations
�Multi-layered

�Robust
�Autonomic node tree configuration

�Affinity with batch queuing systems
�Node can be added or removed

Overview of this talk

�What is Master-Worker programming

�Proposal of Jojo2
�Requirement

�Architecture

�Programming API

�Evaluation

�Conclusion

Master-Worker

�Divide problems into small sub problems

�Master manages a queue to keep sub
problems

�Distribute them to the workers

Site A Site B Site C

Simple Master-Worker

×Scalability
�With several hundreds of nodes, Master will

be overloaded and become bottleneck

×Efficiency
�Communication latency between Master and

Workers is large

Internet

Site A Site B Site C

Site A Site B

Router Node

(Sub Master)

Client (Master)

Hierarchical Master-Worker

� Introduce ‘Sub-master’ between Master and
Worker

○ Scalability
�Distribute loads on Sub-masters

○ Efficiency
�Sub-masters are near from workers

Router Node

(Sub Master)

Difficulties of hierarchical Master-
worker

�Configuration is rather complex
�Difficult to configure, especially in the

dynamically changing environment

Site A Site B

Router Node

(Sub Master)

Client (Master)

Router Node

(Sub Master)

Requirements for grid middleware
framework for Master-worker

�Robustness
�Have to survive changing environment

�Node might be added and removed during
execution

�Easiness
�Have to be configured semi-automatically

�Have to be easy to program on it

Generic Design of Jojo2

� UDP based automatic / dynamic tree
configuration
�Robust

�Easy to configure

� Pure Java
�To cope with CPU / OS heterogeneity

�Automatic user program shipping
�Ease the burden of setting up before execution

�Avoid version mismatch error

� Simple yet powerful API

Implementation: Autonomous tree
construction

site A site B

Sub-masters

invoke

Job submission Job submission

Master

Worker Worker

Globus GRAM / ssh

UDP broadcast UDP broadcast

⇒⇒⇒⇒ Automatic tree

construction that

fits the physical

configuration

Implementation:
Dynamic Node join/leave

site A site B

Sub-masters

invoke

Job submission Job submission

Master

Worker Worker

Globus GRAM / ssh

UDP broadcast UDP broadcast

site C

UDP broadcast

routerC

Implementation: Fault Tolerant

site A site B

Sub-masters

起動

Master

Worker Worker

Globus GRAM / ssh

UDP broadcast

site C

routerC

Automatic restart

of sub-masters

Requirements on API

�Flexibility
�Have to be flexible enough to implement

several styles of programming.

�Robustness
�The program have to aware of join / leaving

of nodes

Message Passing Design (1)

� Adaptation to dynamic node addition/ removal
× message passing with target node ID

Difficult to manage added / removed nodes’ ID

⇒ Broadcast based
�to descendants, broadcast only

�No method to talk with one specific descendant

�With ascendant, uni-cast

ascendant

……

descendant

descendant

descendant

Message Passing Design (2)

�The program have to aware of joining /
leaving nodes
�Re-distribution of jobs

⇒Provides methods for handling with
joining / leaving nodes
�Invoked on join/leave of nodes
�User have to write handling methods on the

events
�Application dependent

API Implementation

� ‘Code’ abstract class
�Stands for nodes in the system

�Programmers have to provide each layer
�Master, Sub-master, Worker

�Supporting classes are also provided
�ParentNode

�DescendantNodes

API (1): Code

public abstract class Code {
ParentNode parent; /* the Ascendant */
DescendantNodes descendants; /* the Descendant */

/* initialization method: will be called on start */
public void start();

/* message handling methods */
public void handleReceiveParent(Message msg);
public Object handleReceiveDescendants(Message msg);

/* handling methods on descendant node join/leave */
public void handleAddDescendant(int id);
public void handleDeleteDescendant(int id);

}

API (2):
ParentNode, DescendantNodes

public class ParentNode { // Parent
/* Send Only */
public void send(Message msg);

/* Blocking call */
public Object call(Message msg);

/* Non-blocking call with future*/
public Future callFuture(Message msg);
/* Non-blocking call with Context */
public void callWithContext(Message msg, Context context);

}

public class DescendantNodes { // Child
/* Broadcast to children */
public void broadcast(Message msg);

/* Returns number of descendants */
public int size();

}

Several types of

Message passing

Is supported

Broadcast

only

A Sample Program (Worker)

public class PiWorker extends Code {
static final int MSG_TRIAL_REQUEST = 1;
Random random = new Random();
public void start() {

long doneTimes = 0, trialTimes;
while(true) {

Message msg =
new Message(MSG_TRIAL_REQUEST, doneTimes);

trialTimes = (Long)parent.call(msg);
if (trialTimes == 0) break;
doneTimes = trial(trialTimes);

}
}

/** give a trial */
private long trial(long trialTimes) { ... }

}

A Sample Program (Master)

public class PiMaster extends Code {
public synchronized Object handleReceiveDescendant(Message msg) {

if (jobMap.containsKey(msg.nodeID)) {
doneTrial += jobMap.remove(msg.nodeID);
doneResult += (Long)(msg.contents);

}
while (jobQueue.isEmpty())

try {wait();}catch(InterruptedException e) {}
long perNode = jobQueue.remove();
jobMap.put(msg.nodeID, perNode);
return perNode;

}

public synchronized void handleDeleteDescendantNode(int nodeID) {
long perNode = jobMap.remove(nodeID);
jobQueue.add(perNode);
notifyAll();

}
}

Evaluation

�Evaluate
�Scalability

�Robustness

�Target application
�Genetic programming for genetic network

inference

�Environment
�TSUBAME Grid Cluster

JDK 1.5.0_06Java

Linux 2.6.5OS

inifiniBand Voltaire
ISR9288

Network

32 GBRAM

Opteron 2.4GHzCPU

Genetic network inference with Genetic
Programming

� Genetic Programming
�A variant of Genetic Algorithm

�‘evolve’ program
Optimize factors,

compute ‘fitness’

reproduction of individual

Generation

update

Master

Submaster

Worker

Cache individuals

Population

Management

Optimize factors,

compute ‘fitness’

Optimize factors,

compute ‘fitness’

Scalability Evaluation

�Changed No. of sub-masters and workers

�Parameter RK: Runge-Kutta step size
�Parameter used by fitness calculation on

workers

�Affects on processing time for each task on
workers

21571E-2

10862E-2

Proc. time [ms]RK

Results of scalability evaluation

RK=2E-2

Proc. time: 1086 [ms]
RK=1E-2

Proc. time: 2157 [ms]

0

1

2

3

4

5

6

7

8

9

0 500 1000

No. of Workers

R
e
la

ti
ve

 P
e
rf

o
rm

an
c
e

SB=2

SB=4

SB=8

Linear

0

1

2

3

4

5

6

7

8

9

0 500 1000

No. of Workers
R

e
la

ti
ve

 P
e
rf

o
rm

an
c
e

SB=2

SB=4

SB=8

Linear

Load distribution

effects of

of sub-masters

Robustness

� 3 patterns of disturbance
�On start up: sub-masters: 4, workers: 256

(a) No disturbance
(b) Half of nodes down and comes back

�Every 15 min. half of nodes dies (5 times in total)
�5min. Later, they comes back

(c) Half of nodes down
� 15 min. after the start time

time

#
 o
f
N
o
d
e
s

time time

(a) (b) (c)

#
 o
f
N
o
d
e
s

#
 o
f
N
o
d
e
s

Robustness Result

(b) Average time for a newly joind node to get task assignment:
18.4 sec
� UDP packet waiting: 17.6 sec.
� Job assignment : 0.8 sec.

⇒ Overhead for node join is small

0.980.981.0Relative Efficiency

154432015406081519872Total CPU x sec.

1116567685937 Time spent [sec.]

(c)(b)(a)

Long time experiment

�Confirmed that Jojo2 is stable and
robust enough to survive long-time
experiment.
�In the environment where nodes come and

leave

�During the experiment, randomly start
and stop sub-masters and workers

0

200

400

600

800

1000

1200

1400

0 1 2 3 4 5 6 7 8 9 10 11 12

Elapsed time (hour)

N
u
m

b
e
r

o
f
W

o
rk

e
rs

Start with

4 submasters

and 1024

workers

reboot 2 submasters,

add 256 workers

Shutdown 1152 workers,

add 512 workers

add 256 workers

shutdown 1

submaster

Shutdown 512

workers

add 512

Workers

add 384 workers

shutdown 64

workers

Long time experiment

Experiment in a Wide Area Grid
Performed as one of the projects for Grid

Challenge in SACSIS2006

Total 7 sites 862CPU

Utilize SGE and PBS on each site and confirmed that all

the participating node was available as a node for Jojo2

Related work

�Jojo
�Our previous work

�Not robust

�Cascaded GridRPC [Aida ’05]
�Not robust enough

�Phoenix [Taura ’03]
�Message passing interface, not MPI

�Allows node increase / decrease

Conclusion

�Proposed Jojo2
�Efficient Programming of fine-grained

hierarchical master-worker applications

�Allows node fault, intentional
addition/removal

�Evaluation
�Confirmed Robustness and Efficiency

Future Work

�Higher level API
�For specific application areas

�For specific algorithms

�Linking with other Languages
�‘Serious’ applications are mostly written in

C++ or Fortran

�To call them from Jojo2 will make sense

Thank you!

Questions?

