Autonomically- Adapting Master-
Worker Programming Framework
for Multi-Layered Grid-of-Clusters

Hitoshi Aoki!, Hidemoto Nakada?,
Kouji Tanaka3, Satoshi Matsuoka!*

1.Tokyo Institute of Technology

2. National Institute of Advanced Industrial
Science and Technology (AIST)

3.Waseda University

4 National Institute of Infomatics

Background

Grid : cluster of clusters

Each cluster is managed by some queuing system
PBS, Grid Engine, Condor
Availability of nodes depends on the administration
policy
Available node set will change dynamically

Job S ission
Login Node
N

Avalilable till
PM9

Background

Master-Worker style programming
Latency tolerant
Fault tolerant

Lot of problems can be mapped on to this
style

Genetic algorithms

Branch and bound method

Parameter sweep

Background

Several globally distribute grid middleware
are proposed

BOINC / Condor type
Robust

Very Course Grained
Not suitable for fine-grained master-worker

MPT type
High speed
Can map fine-grained master-worker
Fragile

Even though the programming style itself is robust, with
MPT you cannot leverage the robustness

Cannot add / remove participating nodes dynamically

Goal

Propose a grid middleware and

programming framework suitable for

master-worker style, that can leverage

existing general grid configurations
Multi-layered

Robust
Autonomic node tree configuration

Affinity with batch queuing systems
Node can be added or removed

Overview of this talk

What is Master-Worker programming
Proposal of Jojo2

Requirement
Architecture
Programming APT

Evaluation
Conclusion

Master-Worker

Divide problems into small sub problems

Master manages a queue to keep sub
problems

Distribute them to the workers

//
//
//
//
//

Jgdjugg)ege

/s
/s
/s
/////
/s
/s

Simple Master-Worker

x Scalability

With several hundreds of nodes, Master will
be overloaded and become bottleneck

X Efficiency

Communication latency between Master and

Workers is large
T\

Hierarchical Master-Worker

Introduce 'Sub-master' between Master and
Worker

O Scalability
Distribute loads on Sub-masters

O Efficiency

Sub-masters are near from workers

/‘ Client (Master)

Router Node ‘ Router Node

(Sub Master) m Sub Master)
4 L/) <

Wt

Difficulties of hierarchical Master-
worker

Configuration is rather complex

Difficult to configure, especially in the
dynamically changing environment

Wt

/‘ Client (Master)
Router Node ‘ Router Node
(Sub Master) m ‘ Sub Master)
%ﬁ?ﬁ\ O

Wt

Requirements for grid middleware
framework for Master-worker

Robustness

Have to survive changing environment

Node might be added and removed during
execution

Easiness
Have to be configured semi-automatically
Have to be easy to program on it

Generic Design of Jojo2

UDP based automatic / dynamic tree
configuration

Robust

Easy to configure

Pure Java
To cope with CPU / OS heterogeneity

Automatic user program shipping
Ease the burden of setting up before execution
Avoid version mismatch error

Simple yet powerful APT

Implementation: Autonomous tree
construction

g invoke

Job submission

Job submission

Sub-masters J_\\

\\ = Automatic tree
construction that
fits the physical
configuration

(¢]
S

Worke

S|te A

Implementation:
Dynamic Node join/leave

g routerC

aster

et

i

Globus GRAM / ssh
Job submission % Job submissi
S

A

Implementation: Fault Tolerant

Automatic restart
of sub-masters

W >t/

@

K@c/

\ Worker
site A

Requirements on API

Flexibility
Have to be flexible enough to implement
several styles of programming.

Robustness

The program have to aware of join / leaving
of nodes

Message Passing Design (1)

Adaptation to dynamic node addition/ removal
X message passing with target node ID
Difficult fo manage added / removed nodes’ ID

= Broadcast based

to descendants, broadcast only
No method to talk with one specific descendant

With ascendant, uni-cast

[ascendant

Message Passing Design (2)

The program have to aware of joining /
leaving nodes

Re-distribution of jobs

=Provides methods for handling with
joining / leaving nodes
Invoked on join/leave of nodes

User have to write handling methods on the
events

Application dependent

API Implementation

'Code’ abstract class
Stands for nodes in the system

Programmers have to provide each layer
Master, Sub-master, Worker
Supporting classes are also provided

ParentNode
DescendantNodes

API (1): Code

public abstract class Code {
ParentNode parent; /* the Ascendant */
DescendantNodes descendants; /* the Descendant */

/* initialization method: will be called on start */
public void start();

/* message handling methods */
public void handleReceiveParent(Message msg):;

public Object handleReceiveDescendants(Message msg):

/* handling methods on descendant node join/leave */
public void handleAddDescendant(int id);

public void handleDeleteDescendant(int id);

API (2):

ParentNode, DescendantNodes

public class ParentNode { // Paren
/* Send Only */
public void send(Message msg);

/* Blocking call */

Several types of
Message passing
Is supported

public Object call(Message msg);
/* Non-blocking call with future*/

public Future callFuture(Message msg);

/* Non-blocking call with Context */

public void callWithContext(Message msg, Context context);

}

public class DescendantNodes { // Child
/* Broadcast to children */
public void broadcast(Message msg);

/* Returns number of descendants */
public int size();

}

~—

Broadcast
only

A Sample Program (Worker)

public class PiWorker extends Code {
static final int MSG_TRIAL_REQUEST =1;
Random random = new Random();
public void start() {
long doneTimes = O, trialTimes;
while(true) {
Message msg =
new Message(MSG_TRIAL_REQUEST, doneTimes);
trial Times = (Long)parent.call(msg):
if (trialTimes == 0) break;
doneTimes = trial(trial Times);
}
}
/** give a trial */
private long trial(long trialTimes) { ... }

}

A Sample Program (Master)

public class PiMaster extends Code {
public synchronized Object handleReceiveDescendant(Message msg) {
if (jobMap.containsKey(msg.nodeID)) {
doneTrial += jobMap.remove(msg.nodeID);
doneResult += (Long)(msg.contents);
}
while (jobQueue.isEmpty())
try {wait();}catch(InterruptedException e) {}
long perNode = jobQueue.remove();
jobMap.put(msg.nodeID, perNode);
return perNode;

}

public synchronized void handleDeleteDescendantNode(int nodeID) {
long perNode = jobMap.remove(nodeID);
jobQueue.add(perNode);
notifyAll();
}
}

Evaluation

Evaluate
Scalability
Robustness

Target application

Genetic programming for genetic network

inference

Environment
TSUBAME Grid Cluster

CPU Opteron 2.4GHz
RAM 32 GB
Network |inifiniBand Voltaire
ISR9288
0S Linux 2.6.5
Java JDK 1.5.0 06

Genetic network inference with Genetic
Programming

Genetic Programming
A variant of Genetic Algorithm

: , Worker
evolve' program

Optimize factors,
compute ‘fitness’
Master P .

ﬁproduction of individua Submaster I
@ ® J 0@ Opti;i% factorsj

——— compute fitness’
Cache individuals
Generation

@
update /
, “—‘\ [J — T | Optimize factors,
Populatlo)n/ \ / compute ‘fitness’

Managemen ‘

Scalability Evaluation

Changed No. of sub-masters and workers

Parameter RK: Runge-Kutta step size

Parameter used by fitness calculation on
workers

Affects on processing time for each task on
workers

RK Proc. time [ms]

2E-2 1086

1E-2 2157

Results of scalability evaluation

Load distribution

effects of

9
e | # of sub-masters P /4
7 | —#— SB=4 \») 7 |—=— SB=4 //‘
o — 1 8
8 |—A -SB=8 /.% s, | —A—sB=8 //
£ ° Linear / E | Linear //
S5 — €5
E / Q
4 4
: : /
5 3 &3
e &
2 2 /
1 1
0 0
0 500 1000 0 500 1000
No. of Workers No. of Workers
RK=2E-2 RK=1E-2

Proc. time: 1086 [ms] Proc. time: 2157 [ms]

Robustness

3 patterns of disturbance

On start up: sub-masters: 4, workers: 256

(a) No disturbance

(b) Half of nodes down and comes back

Every 15 min. half of nodes dies (5 times in total)

B5min. Later, they comes back

(c) Half of nodes down

15 min. after the start time

N
N
N

MRIRIRIRE

of Nodes ©
of Nodes ©

time time

of Nodes @

time

Robusthess Result

(a) (b) (c)
Time spent [sec.] 5937 6768 11165
Total CPU x sec. 1519872 | 1540608 | 1544320
Relative Efficiency 10 0.98 0.98

(b) Average time for a newly joind node to get task assignment:

18.4 sec

UDP packet waiting: 17.6 sec.
Job assignment : 0.8 sec.

= Overhead for nhode join is small

Long time experiment

Confirmed that Jojo?2 is stable and
robust enough to survive long-time
experiment.

In the environment where nodes come and
leave

During the experiment, randomly start
and stop sub-masters and workers

Long time experiment

Start with shutdown 1 add 384 workers

4 sut()jrq%sztjrs submaster | |
an / shutdown 64
W)rkar\si add 256 workers \ workers
\V m

1 V
1000

n

;0 800

Y

(o]

é 600 |

= add 512
400 Workers

reboot 2 submasters,
add 256 workers

Shutdown 1152 workers,
add 512 workers

o 9 10 11 12
Elapsed time (hour)

Experiment in a Wide Area 6rid

Performed as one of the projects for Grid B
| Challenge in SACSIS2006

b AN AN XL V CPU [Opteron242x2] \ [Network 1000Bae-T
RAM 4GB \ RAM 2GB \ 0S RedHat Linux 7.3 Fedora Core
Network 1F)OUBae-T / Networkl 1000Bae-T Linux 3
0s Linux RedHat 8.0 7 = :
s — S / 0s DebianSarge 5 =T ~
h a— b %
a—
- [cPu [Onteron 2 2GHz x| A - — .

Total 7 S|tes 862CPU

Utilize SGE and PBS on each site and confirmed that all
the participating node was available as a node for Jojo2

NeTwork | [1000Bae-T 1 4 a> a | NS S
03 SUSE Einux CPU Opteren | Opteron | Opteron -~ —
_|Enprseevers o \ 26 x2 | 2202 | 2422 |] -
E e RAM 4GB | 3GB | 2GB g e
ﬁIj{ DIS Network 1000Bae-T ﬁi::f‘*ij(Xenia B
™~ 0s Debian Sarge P <l
m N et 7 B A
5 5 5 \ = T Xk Prestolll CPU |Xeon 2.4GHz x2
CPU Athlon MP 2000+ { RAM 1GB
RAM |512MB) \ Network | 100Bae-TX
ggtwork :"’F’OBZ“;T}(0S Debian Sarge
- e ~ = / \ v v V

Related work

Jojo
Our previous work
Not robust

Cascaded GridRPC [Aida '05]
Not robust enough

Phoenix [Taura '03]

Message passing interface, not MPI
Allows node increase / decrease

Conclusion

Proposed Jojo2

Efficient Programming of fine-grained
hierarchical master-worker applications

Allows node fault, intentional
addition/removal

Evaluation
Confirmed Robustness and Efficiency

Future Work

Higher level API

For specific application areas
For specific algorithms

Linking with other Languages

'Serious’ applications are mostly written in
C++ or Fortran

To call them from Jojo2 will make sense

Thank you!

Questions?

