
Autonomically-Adapting Master-Worker Programming Framework

for Multi-Layered Grid-of-Clusters

Hitoshi Aoki
Tokyo Institute of Technology

2-12-1 Ookayama, Tokyo, 152-8550, Japan
hitoshi@smg.is.titech.ac.jp

Hidemoto Nakada
National Institute of Advanced Industrial

Science and Technology (AIST)
1-1-1 Umezono, Tsukuba, 305-8568, Japan

hide-nakada@aist.go.jp

Kouji Tanaka
Waseda University

513 Wasedatsurumaki, Tokyo 162-0041, Japan
k.tanaka@waseda.jp

Satoshi Matsuoka
Tokyo Institute of Technology

2-12-1 Ookayama, Tokyo, 152-8550, Japan
matsu@is.titech.ac.jp

Abstract

Past work on “programming for the grid” for compute-
intensive applications have largely focused on two ex-
tremes, either loosely-coupled, cycle-scavenging, desktop
grid environments such as BOINC or Condor vs. tightly-
coupled metacomputing systems such as MPICH-G2 or
GridMPI. Neither is really appropriate for class of ap-
plications that are middle-tier, e.g., fine-grained branch-
and-bound master-worker applications where the run-
ning time of individual jobs may range from less than
tenth of a second to few minutes, and communication in-
tervals being further fine-grained. Our new grid program-
mingmiddleware and framework, Jojo2, allows efficient
programming of fine-grained, hierarchicalmaster-worker
applications on a grid-of-clusters environment. During
programming, much of the complexities associated with
hierarchy and changes in the underlying resources are
hidden away or isolated, and the user need not be aware of
physical configuration of the resources. Even during exe-
cution, new compute resources can be explicitly be added
via batch submissions, and are subsequently automati-
cally detected and incorporated in the system. Evaluation
of Jojo2 on real master-worker applications proved very
positive, both on TSUBAME, a supercomputing cluster
with 10,000 nodes, as well as a nationwide testbed in-
volving more than 800 CPUs and a number of 100-node
class clusters. In both cases, applications on Jojo2 not
only scaled very well, but autonomously adapted to bulk
changes in the order of hundreds of underlying resources,
both resources being added as well as those going away.

1. Introduction

Past work on “programming for the grid” for
compute-intensive applications have largely fo-
cused on two extremes. One is loosely-coupled,
cycle-scavenging, desktop grid environments such
as BOINC[2] or Condor[11], where compute cy-
cles are largely provided for free, jobs are principally
independent and parameter-sweep, where eager re-
source allocation policies work well, and adaptation to
changing requirements of the underlying compute re-
sources are achievable in a fairly natural fashion.
The other is tightly-coupled metacomputing sys-
tems such as MPICH-G2[6] or GridMPI[4] where
resources are often metered and allocated at the be-
ginning of job execution, and fundamentally being
difficult to adapt to underlying changes in the re-
sources, if feasible at all. Neither is really appropri-
ate for class of applications that are middle-tier, e.g.,
fine-grained branch-and-bound master-worker applica-
tions where the running time of individual jobs may
range from less than tenth of a second to few min-
utes, and communication intervals being further
fine-grained.

Such applications have great possibilities to scale
on a multi-layered cluster-of-grid environment, where
abundant resources could be provided by grid resource
centers in a metered fashion, and medium granularity
of the running time and communication made possi-
ble by efficient localized communication. The problems
then are twofold (1)How to provide a program frame-
work to allow for programming such applications in a
cluster-of-grids environment efficiently, independent of

the underlying physical configuration of the grid, and
(2) how to allow explicit resource control by the appli-
cation user as well as the system administrator, such
that increase and decrease in the resources according to
application progress, available resources, and/or avail-
able allocation time. Where, much of the bookkeeping
and reconfiguration on the application side would be
achieved in an autonomic fashion. In fact (2) is also
closely tied to longevity and reliability of long-running
applications in such an environment, where resources
will go away not only for physical hardware faults, but
also software faults as well as non-faulty events such as
jobs explicitly being killed on backfill scheduling.

Our new grid programming middleware and frame-
work, Jojo2, allows efficient programming of fine-
grained, hierarchical master-worker applications on
such grid-of-clusters environment. During program-
ming, the programming model is that of multi-layered
master-worker method [1, 5], and much of the com-
plexities associated with such hierarchy and changes
in the underlying resources are hidden away or iso-
lated, and the user need not be aware of physical
configuration of the resources. Even during execu-
tion, new physical compute resources can be ex-
plicitly be added via batch submissions, and are
subsequently automatically detected and incorpo-
rated in the system. Resources that go away are also
detected and the application as well as the system re-
configured accordingly. Callback hooks are provided
in the API for cases where such adaptations also re-
quire manual interventions.

Evaluation of Jojo2 on real master-worker applica-
tion in genetic programming proved very positive, both
on TSUBAME, a supercomputing cluster with 10,000
nodes, as well as a nationwide distributed grid testbed
involving with more than 800 CPUs consisting of a fed-
eration of 100-node class clusters. In both cases, ap-
plications on Jojo2 not only scaled very well, but au-
tonomously adapted to bulk changes in the order of
hundreds of underlying resources, both resources be-
ing added as well as those going away. The results
show that 1) API in Jojo2 is able to allow program-
mers to write proper handlers to allow a program can
adapt to the environmental change, 2) it scales well
with more than one thousand CPUs, and 3) it adapts
to the changing environment with acceptable overhead

Additional contributions of the paper are as follows:

• We propose a mechanism to automatically config-
ure internal communication channel within a clus-
ter. It uses UDP packet broadcast for component
discovery. This allows less configuration effort for
the users and on-the-fly addition and removal of
nodes to the system.

����������	
��
����������������������
�
���������������
Figure 1. Multi-layered Master-worker mapped

on the Typical Grid-of-Clusters

• We propose a programming API that allows pro-
grammers to write medium to fine-grained adapt-
able programs on the grid with minimum effort, by
imposing restrictions on message passing and pro-
viding a uniform message handler mechanism.

2. Multi-layered Master-Worker on the

Hierarchical Grid

Master-Worker computation is a simple yet powerful
computation model in which a master manages a queue
of jobs and assigns jobs on request from the workers.
Large number of computations can be mapped into this
model, such as parameter-sweep computations, branch
and bound, and genetic algorithms. One notable char-
acteristics of this method is that load balance amongst
workers is automatically performed without any effort.

One potential shortcoming in the model is scalabil-
ity. With huge number of workers, the master which
is in charge of distributing jobs could be the bottle-
neck and make some of the workers starved. To avoid
this problem, Multi-Layered Master-Worker [1, 5]
model was proposed, where submasters are inserted be-
tween master and workers. Submasters locally man-
age local job queues and distribute jobs to downstream
workers. Masters communicate with submasters to bal-
ance the length of local job queues managed by the
submasters. While master-submaster communication
tends to be in bulk, submaster-worker communication
is more fine-grained and frequent.

On the other hand, grids also have multiple lay-
ers. Modern scientific computation Grids are typically
composed as a grid-of-clusters, where several clusters,
each of them is managed by its own queuing system
locally, are connected with high-speed wide-area net-
work. The upper layer of such a Grid is the wide-area
network, where latency is high, throughput is relatively
low, number of participating nodes is small, and secu-
rity requirements are severe. The lower layer is the in-
ternal network within the cluster, where latency is low,

2

throughput is high, number of nodes is large, and se-
curity requirements are not severe. Between these two
layers there are “login nodes” that connect two net-
works.

We can map the multi-layered Master-worker on
to the Multi-Layered Grid as shown in figure 1, i.e.;
put submasters on the login nodes and workers on the
nodes within the clusters. Thus, we can map the two
different natured communications on to the appropri-
ate networks, i.e., less frequent bulk communication be-
tween master and submasters will be performed on the
high-latency internet, and frequent fine-grained com-
munication between workers and submasters will be
mapped onto the fast, low-latency internal network,
avoiding starvation comes from job supply delay.

3. Design of Jojo2

3.1. Requirements

The requirements for the middleware to support
multi-layered master-worker computation in the large
scale Grid environment are as follows:
Autonomic network configuration It has to allow
nodes to be added or removed by application users as
well as administrators. For that, the middleware have
to 1) automatically detect the addition/removal and 2)
autonomically establish/shutdown connections
Programming API to allow adaptation It has to
provide programming API that allows programmers to
write a program that can adapt node joining/leaving.
Allow explict resource controll Explicit resource
control by the users and administrators during applica-
tion execution over multiple production-managed clus-
ters During application execution, users and adminis-
trators should be able to add or subtract compute re-
sources at will, with software facilities readily available
across multiple clusters such as (different varieties of)
batch queuing systems.

3.2. Network Configuration

Jojo2 employs two different network configuration
methods, one for external and another for the inter-
nal network. For external network, i.e., between mas-
ter and submasters, it takes straight forward approach.
The master invokes submasters and the submasters
connect back to the master.1 The hostnames to exe-
cute submasters have to be specified in the configura-
tion file by the users.

1 This describes the case with Globus GRAM. With SSH, it is
even simpler; the master invokes submasters with SSH and use
the connections as the communication channels.

For internal network, i.e. between submaster and
workers, it uses discovery-based network configuration.
The workers “discover” a submaster and connect to it.
For discovery, we employed UDP packet broadcast. The
submaster periodically broadcast a packet that con-
tains contact information to the submaster. The work-
ers listen to the packet and get the information. Note
that it is allowed to have several submasters in a single
cluster, which is important especially in a large-scale
cluster.

Workers can be invoked via local queuing system,
such as Condor, SGE, or PBS. It allows users to in-
voke workers without knowing each node in the sys-
tem. Note that the worker invocation can be performed
via Globus with appropriate job managers. In this case,
users do not have to login the cluster at all. The work-
ers can be added at any time.

To detect nodes removal and/or node/network
faults, Jojo2 uses heartbeat monitoring. Each com-
ponent sends heartbeat message periodically each
other. When a component does not receive the mes-
sage from another component for a specific time pe-
riod, it recognizes the peer has died.

3.3. The programming API

Jojo2 provides users a programming API designed
focusing on 1) hierarchical modeling that fits in the
hierarchical Grid Environment, 2) callback handles to
adapt dynamic node join/leave, and 3) Multicast based
message passing structure to be tolerant of node num-
ber fluctuation.

Basic Concept In Jojo2, each node runs its own in-
dependent program. Each program sends and receives
message with each other and perform computation.
While Jojo2 allows each single node to have different
programs, nodes in a layer tend to share a single pro-
gram. The API is designed to be as asynchronous as
possible so that it allows programmers to write pro-
grams in a non-blocking fashion.

Adaptation to the changing Environment While the
message passing API is designed to be tolerant of the
node join/leave, as discussed below, there are still few
things left for the programmers. To write an adap-
tive program for changing environment, the program-
mers have to be notified the change and address
them. Jojo2 provides handlers that notify the join-
ing/leaving of downstream nodes.

Message Passing In Jojo2, each program that runs on
each node is implemented as a class that extends an ab-
stract class provided by the system. The abstract class
provides objects that abstract the upstream node and

3

�����
�� !"#$%&' "#$%&'

()'*&'$
�� !"#$%&'�+,-./0��10�/1�+23��4567,+058�9:004;<=,17/>?/0� ;<=,17/>?/0�����@

ABCDECFGCEHIJBDEKJHGLBMNOPEKQRECSTBIKBCUNVWUEXOYZ ABCDECFGCEHIJBDEKJHGLBMNOPEKQRECSTBIKBCUNVWUEXOYZ()'*&'
Figure 2. Dynamic Node Configuration

downstream nodes. Invoking “send” methods on the
objects will send messages to the corresponding nodes.

In contrast with send, there is no explicit “receive”
method. Instead, the arriving messages will invoke han-
dlers, in an independent thread.

To communicate to an upstream node, various mes-
sage passing modes are supported, since the program-
mers safely assume that the upstream node is always
there. For downstream nodes, however, this may not
be the case. Each node might disappear, and new node
might join at any time. Sending messages to disap-
peared nodes will cause exceptions and would other-
wise require the programs to deal with the situation
explicitly.

To avoid this situation, we allow only the multi-
cast style message passing to the downstream nodes.
As the result, the programmer does not have to man-
age downstream nodes one by one, but rather, down-
stream nodes appear in the program as one single ob-
ject. Although this might seem somewhat restrictive
in terms of generality in writing parallel programs, in
practice we have found that such features a sufficient
to describe every master-worker style program we have
encountered.

4. Implementation

4.1. Dynamic Node configuration

Jojo2 provides autonomous node discovery and con-
figuration based on the UDP broadcast. Here we de-
scribe the steps to construct 3-tiered Grid composed of
two clusters (figure 2). We assume that the clusters to
be of general production in that it can be accessed via
Globus or SSH, and have some queuing system to man-
age the nodes shared across multiple users and jobs.
Each node only is connected to a private cluster inter-
connect and no direct connection is allowed from out-
side to each node.

1. The user starts up the master component on the
client node with a configuration file specified.

2. The master component invokes submasters on the
login nodes of the clusters specified in the configu-
ration file, with Globus GRAM [3], or SSH. For
GRAM, the fork job-manager is recommended,
since the submasters have to run on the head node
that has connectivity to the global network as well
as local.

3. The Submaster starts to broadcast UDP packets
periodically. It advertises the number of currently
connected workers for load balancing among sub-
masters.

4. The user submits workers to the cluster node via
a workers to the cluster node via queuing system.
This can be done from the client node via Globus
with appropriate job managers, such as PBS or
Condor, or from the login node by the user who
logged in there via SSH.

5. The workers start with waiting for the UDP pack-
ets from the submasters. They will find a submas-
ter by receiving a UDP packet and make connec-
tion to it.

To avoid excessive concentration to one sub-
master, workers do not connect to the first found
submaster immediately. Instead, it will wait for a
while for UDP packets from other submasters and
connects to the least loaded submaster.

4.2. On-the-fly Component Addition

Submasters keep broadcasting UDP packets period-
ically so that it can be found by the workers there. To
add nodes, users just have to submit the workers with-
out any configuration, via its local queuing systems.
The invoked workers will wait for the broadcast after
they start up and then connect to the submaster.

A submaster also can be added on-the-fly. The mas-
ter is always listening on a specified port. Invoking sub-
masters with the IP address and port of the master
will add new submasters and make them participate
with computation. This means that whole new clusters
can be added to the computation on-the-fly. To add a
new cluster, one merely invokes submasters on the clus-
ter specifying the master address and port, and invoke
workers there.

4.3. Adaptation to Component removal

Here, we describe the steps will be taken when each
component goes down, either via a failure (including

4

abstract class Code {
ParentNode parent; /* Upstream node */
Descendants descendants; /* Downstream */

/* initialization */
void init(Map prop);

/* the body */
void start();

/*
* handlers to handle received messages
*/

void handleReceiveParent (Message msg);
Object handleReceiveDescendant (Message msg);

/*
* callback methods for
* join/leave of down stream nodes
*/

void handleAddDescendantNode (int nodeID);
void handleDeleteDescendantNode (int nodeID);

}

Figure 3. The Code Class

job kills via backfill), with explicit user or administra-
tor intervention, or when the allocated compute time
by the queuing system expires. When a worker is re-
moved, the corresponding submaster will notice the
event and invokes a handler method to notify the pro-
gram, is described in section 4.4 in detail. The pro-
gram has to handle the event and perform bookkeep-
ing if needed. The handler will run in a separate thread
so that the main thread can continue the execution.

When a submaster dies, the upstream component,
i.e., the master will notice and invoke the handler, just
like above. The master can be configured so that it
automatically tries to invoke a new submaster on the
same node. The downstream components, i.e., work-
ers, will lose connection with the submaster, and go
back to the waiting status for UDP packets from other
submasters. If there are other submasters in the sub-
net that keep broadcasting UDP packets periodically,
the worker will find it and connects to the submaster.

4.4. Class Framework for Programming

API

Programming in Jojo2 is to extend the Code ab-
stract class for each node. In simple 2-tier master-
worker model, a programmer has to implement mas-
ter and worker extending the Code. In 3-tier master-
worker, the programmer also has to implement the in-
termediate submaster code.

Code Figure 3 shows the skeleton of the Code abstract
class. Member parent and descendants denote upstream
and downstream nodes, respectively. Calling methods
on them will send messages to the corresponding nodes.

The init method will be called when the object is
created. The argument Map includes contents of the
properties file that is passed to the system at startup.
It is guaranteed that other methods including start and

handlers will never be invoked before the init invoca-
tion finishes. The start method is the “body” of the
code, corresponds to the main in the usual Java appli-
cation.

The handleReceiveParent and the handleRe-
ceiveDescendant are the handlers for messages from
upstream and downstream, respectively. They are in-
voked when a message arrives with the message. The
handleAddDescendant and the handleDeleteDescen-
dant are “hooks” to inform programmers of the change
in the running environment. They are called on node
joining/leaving to the system. Note that these meth-
ods are invoked in a separate thread, so that one event
handling will not cause delay in the handling of fol-
lowing events.

ParentNode ParentNode class stands for the upstream
node. The ParentNode provides four varieties of meth-
ods to send messages, just like in our previous work
Jojo[5].

Descendants Class Descendants stands for downstream
nodes. Note that all the downstream nodes are rep-
resented as a single object, such that they are not
treated separately. Descendants class just has a single
method for sending messages; broadcast(Message msg),
that sends same messages to all the downstream nodes.

Message Message stands for the messages exchanged
between nodes. Message contains integer tag to help
dispatching the message as well as serialized object as
the content.

4.5. A program example in Jojo2

Figure 4 and figure 5 show a fragment of simple
program pair written in Jojo2, which computes PI in
master-worker fashion with the Monte-Carlo method.
Figure 4 shows the master code while figure 5 shows
the worker code. This program will dynamically bal-
ance load distribution with self-scheduling.

Master is waiting for requests from the workers and
provides jobs. Workers contacts to the master and ob-
tain the number for the trial, perform the random trial,
and report the results to the master. Note that we com-
bine the job request and result report into a single mes-
sage to simplify the program.

The handleDeleteDescendantNode method in the
master code is handling node leaving from the running
environment. The master memorizes jobs currently in
charge of each node. When the master detects a node
is leaving, it will return the job to be done by the node
into the job queue, so that the job will be re-assigned
to other nodes in the future.

5

public class PiMaster extends Code {
boolean done = false;
long times, doneTrial = 0, doneResult = 0;
LinkedList<Long> jobQueue = new LinkedList<Long>();
HashMap<Integer, Long> jobMap =

new HashMap<Integer, Long>();
public void init(Map args) { ... }
public synchronzied void start() { ... }

public synchronized Object
handleReceiveDescendant(Message msg) {

if(msg.tag != PiWorker.MSG_TRIAL_REQUEST)
return null;

if(jobMap.containsKey(msg.nodeID)) {
doneTrial += jobMap.remove(msg.nodeID);
doneResult += (Long)(msg.contents);

}
while(doneTrial < times) {

if(! jobQueue.isEmpty()) {
long perNode = jobQueue.remove();
jobMap.put(msg.nodeID, perNode);
return perNode;

}
while(jobQueue.isEmpty())
try {wait();}catch(InterruptedException e) {}

}
done = true;
notifyAll();
return 0L;

}

public synchronized void
handleDeleteDescendantNode(int nodeID) {

long perNode = jobMap.remove(nodeID);
jobQueue.add(perNode);
notifyAll();

}
}

Figure 4. The Master Program

public class PiWorker extends Code {
static final int MSG_TRIAL_REQUEST = 1;
Random random = new Random();

public void start() {
long doneTimes = 0, trialTimes;
while(true) {

Message msg =
new Message(MSG_TRIAL_REQUEST, doneTimes);

trialTimes = (Long)parent.call(msg);
if(trialTimes == 0) break;
doneTimes = trial(trialTimes);

}
}

/** give a trial */
private long trial(long trialTimes) { ... }

}

Figure 5. The Worker Program

5. Evaluation

Here we evaluate Jojo2 focusing on its scalability
and adaptability with an application that infers ge-
netic networks in a real lifescience application with the
GP (genetic programming) technique. [7]

5.1. Evaluation Setup

Genetic network is the control relationships among
(true, physical) genes and can be expressed in the form
of nonlinear simultaneous differential equations. The
application automatically coefficients of the equations

[\]̂_̀̂abcd]efghde_\i]ajb̂]kaggl[\]̂_̀̂abcd]efghde_\i]ajb̂]kagglfa\femid]̂ekeb̂km̂n̂micopakafc]̂eki\mc]aqrstuv wxyzrstuv {|v}uv~r��u�������xr�s�e\ioc]̂ek�ckc�a_ak] [\]̂_̀̂abcd]efghde_\i]ajb̂]kaggl[\]̂_̀̂abcd]efghde_\i]ajb̂]kaggl[\]̂_̀̂abcd]efghde_\i]ajb̂]kaggl[\]̂_̀̂abcd]efghde_\i]ajb̂]kaggl
Figure 6. Overview of the Application

based on given data series by using Genetic Program-
ming.

GP is essentially a variant of GA (Genetic Algo-
rithm); where the individuals “genes” (not to be con-
fused with the real genes we are dealing with in the
problem domain) sets of equations. Figure 6 shows
the overview of the configuration of the application.
The master is in charge of the generation of individ-
ual “genes”, and updating the population. Submas-
ters cache individual genes, and provide them to the
workers. They prefetch jobs from master so that it al-
ways keeps twice as many as the number of workers
that have. Workers retrieve individuals from submas-
ters, optimize factors in the equations, and compute its
fitness.

Each worker optimize cofficients in the equation
with Runge-Kutta Method to compute its fitness, and
the average run time for one job mainly depends on the
Runge-Kutta step size. In other words, we can control
the granularity of the worker by changing the step size.
The smaller the step size we use the larger (or coarser)
the granularity we obtain.

We used TSUBAME Grid Cluster as the evalua-
tion platform. Each node in TSUBAME has 8 AMD
Opteron chips with 2 CPU cores, and has 32 GBytes
memory. Below, we denote each CPU core just as
’CPU’ for simplicity. We submitted the workers so that
each worker will be assigned one CPU, i.e., each node
will be hosting 16 workers.

5.2. Evaluation of the Scalability

We performed experiments to investigate how
worker granularity and number of submaster affect on
the scalability. We controlled granularity by setting
Runge-Kutta step size as 2 · 10−2 and 1 · 10−2. The av-
erage worker running time for the step sizes are 1086
ms and 2157 ms, respectively. We performed exper-
iments with 128, 256, 512, and 1024 CPUs, varying
the number of submaster 2, 4, and 8. We did not per-
form the experiments with one submaster, because it
is not possible to handle 1024 CPUs with one submas-

6

������
����
� ��� ��� ��� ��� ���� ������� ������������� ¡¢�£�¤¥¦¤§�̈©�

ª«¬�ª«¬�ª«¬�­®̄ °±²
Figure 7. Scalability with Step: 2 · 10−2

³́µ¶·̧
¹º»¼
³ µ³³ ·³³ ¹³³ »³³ ³́³³ µ́³³½¾¿ ¾ÀÁ¾ÂÃÄÂÅÆÇÈÉÊËÌÇÍÇÎÏÐÎÑÉÒÓÇ

ÔÕÖµÔÕÖ·ÔÕÖ»×ØÙÚÛÜ
Figure 8. Scalability with Step 1 · 10−2

ter due to the number of file descriptor limitation per
process.

The results are shown in figure 7 and figure 8. SB
in legend denotes the number of submasters. Note that
the performances shown are relative to the case with
128 CPUs with 2 submasters. Both of them show good
scalability. Even in the worst case (SB = 2, step =
2 ·10−2), it shows 5.2 times faster for 1024 CPUs, com-
pared with 128 CPUs.

We can observe the number of submaster matters
especially for large number of CPUs and fine granular-
ity. With 1024 CPUs and 2 · 10−2, 2 submaster shows
just 5.2 times speed up while 4 and 8 submaster show
more than 7. This is because submasters could become
bottlenecks when they have to handle large number of
workers with short turn around. Increasing the num-
ber of submasters distributes the load and results in
better scalability.

Comparing figure 7 and figure 8, we can see that to
have proper granularity for worker is very important
to obtain good scalability.

(a) (b) (c)

Time spent [sec] 5937 6768 11165
Total CPU · sec. 1519872 1540608 1544320

Relative Efficiency 1.0 0.98 0.98

Table 1. Time spend with disturbance

5.3. Evaluation of Adaptability

To confirm adaptability and adaptation overhead in
Jojo2, we performed a set of experiments by “inject-
ing” the following artificial disturbances; (a) No dis-
turbance, i.e., all the worker run from start to end. (b)
One half of the workers run from start to end. Another
half of them are periodically stopped for 5 min., after
they run 15 min. During the run, there were five stops.
(c) One half of the workers run from start to end. An-
other half of them go away after they run 15 min. We
used 256 CPUs and the same application as above. We
employed 5 · 10−3 as the Runge-Kutta step size and
four submasters.

The results are shown in Table 1. The first row shows
time spent for the whole execution, the second shows
total CPU·sec. used for the execution, and the third
shows relative efficiency compared with (a).

As we can see from the table, total CPU·sec. spent
for executions are roughly the same. This means that,
re-joined workers are effectively utilized immediately in
the computation, Relative efficiency for (b) is slightly
smaller than 1.0. It means that there are some over-
head due to removing and re-joining workers, but it is
acceptably small.

Removing worker from a pool will impose overhead
derived from abandoned computation. When a worker
is removed, running job on the worker will be discarded
and the computation time spent till then for the job is
abandoned.

Joining worker also imposes some overhead. When a
worker joins a pool, it has to wait for UDP packet ar-
rives from then submaster, and download code into the
virtual machine to execute (plus possiblly JIT compi-
lation), before it actually starts computation.

5.4. Experiment in a Wide Area Grid

We also performed an evaluation on a Grid testbed
spanning wide area network in Japan, which was setup
for Grid Challenge 2006. The testbed was composed
of 7 clusters, 862 CPUs in total. While we cannot get
numbers from the experiment due to the fact that the
testbed was shared by many participants, we confirmed
that Jojo is capable of utilizing widely distributed Grid
environment.

7

6. Related work

Our previous work Jojo[5], was an attempt to map
multi-layered master-worker on to the multi-layered
grid-of-clusters. Although it showed good scalability,
it cannot adapt to the underlying resource changes.

The work in [1] proposed a system that uses two
GridRPC[8] middleware in cascading manner; Ninf-

G[9] and Ninf-1, to map multi-layered master-worker
on to the Grid environment. Their system shares most
shortcomings with the previous version of Jojo. It can-
not adapt to the changing resources and requires de-
tailed knowledge of participating nodes.

Phoenix[10] is a programming environment that
can adapt node number increase and decrease. In
Phoenix, they use logical node name for message pass-
ing, instead of physical one. The mapping between
logical nodes and physical node can be dynamically
changed, without affecting the program itself. It cannot
adapt sudden-death of nodes, however. Before remov-
ing nodes, Phoenix requires remapping nodes and date
evacuation. Although Jojo2 is specialized for Master-
Worker and is not as versatile as Phoenix, it is more
adaptable to changing environment.

7. Conclusion

We proposed a new grid middleware Jojo2 that al-
lows efficient programming of fine-grained, heirarchical
master-worker applicatons on the grid-of-clusters envi-
ronment. It allows not only nodes faults but also inten-
tional addition and removal of nodes to enable efficient
utilization of the grid, assuming that future grid in-
frastructures will hiearchically consist of a federation
of clusters with private addresses for intra-node com-
munication.

We evaluated Jojo2 on a large-scaled Grid environ-
ment with a real application and confirmed its scala-
bility and adaptability.

For future work, we will address the following issues:

• Higher level API set is required. The program-
ming API shown here is relatively primitive and
the threashold is still high for the end users. For
example, handling node joining and leaving could
be too much burden for average application pro-
grammers, not familiar with the parallel program-
ming. We are implementing a higher level API set
that hides these details from the programmer and
make them concentrate on their particular domain
problem.

• Harnessing with libraries written in other lan-
guages is important for serious scientific computa-
tion. Jojo2 is written in Java and currently limited

to the Java written computation libraries while se-
rious scientific libraries tend to be written in C,
C++ or Fortran. We are investigating a way to
execute C-written libraries from the leaf node of
the Jojo2 so that we can get the benefit of com-
putation speed from C-written library while keep-
ing the flexibility of Java language as a whole sys-
tem.

References

[1] K.Aida andT.Osumi. A case study in running aparallel
branch and bound application on the grid. In Proceed-
ings of the 2005 International Symposium on Applica-
tions and the Internet (SAINT 2005 Workshops), pages
164–173, 2005.

[2] D. P. Anderson, C. Christensen, and B. Allen. Design-
ing a runtime system for volunteer computing. In Proc.
of SC06 (the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis),
November 2006.

[3] K. Czajkowski, I. Foster, C. Kesselman, N. Karonis,
S.Martin,W.Smith, andS.Tuecke. A resourcemanage-
ment architecture for metacomputing systems. In Proc.
IPPS/SPDP ’98 Workshop on Job Scheduling Strategies
for Parallel Processing, 1998.

[4] M. Matsuda, T. Kudoh, Y. Kodama, R. Takano, and
Y. Ishikawa. Efficient mpi collective operations for clus-
ters in long-and-fast networks. In Proc. of Cluster2006,
2006.

[5] H.Nakada, S. Matsuoka, and S. Sekiguchi. A java-based
programming environment for hierarchical grid: Jojo. In
CCGrid 2004, 2004.

[6] A. Roy, I. Foster, W. Gropp, N. Karonis, V. Sander, and
B.Toonen. MPICH-GQ:Quality-of-Service forMessage
Passing Programs, November 2000.

[7] E. Sakamoto and H. Iba. ”inferring a system of differen-
tial equations for a gene regulatory network by using ge-
netic programming”. In Proc. of the Congress on Evolu-
tionary Computation (CEC2001), pages 720–726, 2001.

[8] K. Seymour, H. Nakada, S. Matsuoka, J. Dongarra,
C. Lee, and H. Casanova. GridRPC: A Remote Pro-
cedure Call API for Grid Computing. submitted to
Grid2002.

[9] Y. Tanaka, H. Nakada, S. Sekiguchi, T. Suzumura, and
S. Matsuoka. Ninf-g: A reference implementation of
rpc-basedprogrammingmiddleware for grid computing.
Journal of Grid Computing, 1(1):41–51, 2003.

[10] K. Taura, T. Endo, K. Kaneda, and A. Yonezawa.
Phoenix : a parallel programming model for accommo-
dating dynamically joining/leaving resources. In Proc.
of PPoPP 2003, pages 216–229, 2003.

[11] D. Thain, T. Tannenbaum, and M. Livny. Condor and
the grid. In Grid Computing: Making the Global Infras-
tructure a Reality. John Wiley & Sons Inc., December
2002.

8

