Preliminary Study of A Task Farming API over The GridRPC Framework

Yusuke Tanimura, Hidemoto Nakada, Yoshio Tanaka, and Satoshi Sekiguchi
Grid Technology Research Center
National Institute of Advanced Industrial Science and Technology
{yusuke.tanimura, hide-nakada, yoshio.tanaka, s.sekiguchi } @aist.go.jp

Abstract

In this paper, a middleware suite, which provides a Task
Farming API, is studied in use over the GridRPC standard,
in order to reduce the complexity of developing task paral-
lel applications for the grid. APIs are proposed and higher
functionality in task scheduling and fault toleranceisimple-
mented in the middleware, based on our past experiences
with the Ninf-G. Through our study, it is revealed that the
Argument Array API needsto provide a meansto copy argu-
ments for duplicated task assignment. Timing of data trans-
fer in the non-blocking RPC and a method to retrieve exe-
cution information for each RPC are expected to be stan-
dardized in the GridRPC. By resolving these three issues
in the GridRPC, our Task Farming API library, meeting
application requirements, can be fully realized on multiple
GridRPC systems, paving the way for other higher func-
tional API librariesto be designed and implemented.

1. Introduction

Both parameter-sweep applications and master-slave ap-
plications would achieve their large-scale calculations in a
realistically short time on the grid, if the grain size of each
sub task were large enough. The GridRPC[8] is a frame-
work to develop such applications easily. The End-User
API set of the GridRPC provides an API to call a remote-
library function as if the function exists at the local end. The
set succeeds in hiding most of the complexity of the grid,
such as differences in machine architecture, communication
methods, and so on, and in improving the programmability
of scientific applications.

We have worked on the Ninf project[6] since 1994,
and developed the Ninf-G as a reference implementation
of the GridRPC. Collaborative research with application
people who study physics or chemistry indicated to us
the significance of the GridRPC framework and the Ninf-
G software[10]. In particular, the stability of the Ninf-
G, and how to implement a fault-tolerant application us-

ing the GridRPC are shown in our studies[9, 11], one of
which performs a long-term experiment to solve a TDDFT
equation[11]. A higher-level functionality should be im-
plemented in order to accomplish the long time execution
on several hundreds of nodes on the grid. On the other
hand, the End-User API provides only a primitive function
according to the design basis of the GridRPC. Application
programmers need to specify the destination of the RPC or
append codes for fault-tolerance over the primitive function.
This is really inconvenient because they must implement
some of those functions themselves so that their applica-
tions continue to run for a long time on hundreds of nodes
to contribute to scientific discovery. Otherwise, their ap-
plications will hang up on an unstable network, or will not
achieve the high performance they expect.

Based on this background, this paper targets cost reduc-
tion of developing a real-science application. We discuss a
Task Farming API library that implements common com-
ponents and hides their complexity from applications. Task
Farming runs the same program in parallel while chang-
ing input data and parameters. The Task Farming API en-
ables programmers to produce task farming code easily, and
to have almost the best performance and stability possible
without a great amount of effort. Currently, NetSolve[2]
and Ninf[6] projects implement the Task Farming API in
their studies. NetSolve has a performance issue because
its asynchronous call does not perfectly implement non-
blocking data transfer and the farming API is built on that.
The NetSolve farming API consists of only one function
call and the farming is completed in the function. This
forces programmers to wait for any result until all tasks
are done. Some applications, such as image processing,
which shows a processed image in real time, may want to
retrieve a result as soon as the task is finished[3]. Ninf is
implemented with a callback mechanism to spend memory
capacity frugally[5]. The callback approach is utilized for
post-processing of each task. The callback function is exe-
cuted after one task is done, so that the result data is passed
to the user’s memory space from the Ninf library. This ap-
proach means that the Ninf doesn’t have to have the entire

memory space to receive results of all tasks at the moment.
However, this approach is not friendly for some application
programmers, who are not accustomed to C programming
rather than Fortran, to write code for the callback method.

In this study, we summarize the user’s requirements for
the Task Farming API and redesign it with task schedul-
ing and fault-tolerance. Through discussion of our design
and its implementation, we will point out what the GridRPC
standard should include or modify in order to build a higher-
functional API set like that required for Task Farming. Our
paper uses the Ninf-G, but the discussion and the results can
be applied to other GridRPC systems.

2. GridRPC and Task Farming

In this section, the GridRPC and its current status are in-
troduced, and widely anticipated functions for Task Farm-
ing are summarized.

2.1. Status of GridRPC

The GridPRC is one of the programming models for
a grid application. An application program using the
GridRPC consists of main code and a segment of stub code.
When the main program invokes an RPC, the corresponding
stub program runs on a remote machine. The stub program
must be prepared on the remote before the RPC is invoked
or be shipped to the remote at the same time as the RPC in-
vocation. A task-parallel program can be written with asyn-
chronous RPC.

The GridRPC API is being standardized at the working
group of the GGF[4]. At this time, in August, 2005, the
End-User API is in the final phase, and is going to be re-
leased as a recommendation document. The End-User API
is designed to provide a primitive API set, and then some is-
sues, such as scheduling and fault-tolerance, should be con-
sidered in the application program or in the higher middle-
ware over the primitive set. There are two major higher API
sets in consideration. One is the Task-Farming that this pa-
per targets, and the other is Task-Sequencing[1] which en-
ables programmers to write a single execution for grouped
tasks. Output data of one task becomes input data of an-
other task in grouped tasks. The middleware that provides
the Task Sequencing API implements data persistency on
the remote for avoiding unnecessary data communication.

Currently, the GridRPC working group is engaged in dis-
cussion about the Middleware API sets to support imple-
mentation of those higher APIs over the GridRPC frame-
work. Especially, the Argument Array API set to handle
arguments of the RPC, and the Data Handle API to treat
data persistency, have been discussed.

2.2. Requirements for a Task Farming API

e Design for making a Task Farming tool over APIs

A Task Farming API set should allow users to imple-
ment other tools over itself. For example, application
people expect to submit a task with interactive tool like
Matlab or other scripting languages[3]. Some applica-
tion people may want to concentrate on an algorithm
for generating parameters and post-processing of each
task.

e Programmability of the C-based GridRPC API

The End-User API of the GridRPC abstracts a remote
library with a function handle. Each handle corre-
sponds to a unique function on a specific remote ma-
chine. The function handle must be indicated in invok-
ing each RPC. However, it is convenient for applica-
tion people if the GridRPC system allocates the RPC
to an appropriate server. Moreover, users can benefit
from a performance improvement by the sophiscated
implementation of the middleware. In this case, every
task should be watched by the middleware. An appli-
cation program only has to wait for the completion of
some or all tasks, using “wait any” or "wait all,” like
an API. Some application users prefer using the gsub-
like semantics of the batch system in front of remote
libraries. Their main reason is because the interface is
friendly to most scientific application users.

Another requirement is to provide remote initialization
for the Task Farming. The initialization should be per-
formed with either uniform or non-uniform parame-
ters. The registration mechanism of an initialization
method and its arguments, and an automatic invoca-
tion mechanism for the method should be implemented
inside of the Task Farming library. In some applica-
tions, post-processing must be executed immediately
after the task is completed.

e Automatic task allocation

The middleware should implement efficient task as-
signment by monitoring the status of computers and
networks. A round-robin task assignment method
should be implemented as basic policy, and pooled
servers are arranged in the order of performance or sta-
bility. This self-scheduling, based on real-time moni-
toring, seems to be useful. Of course, the number of
task submissions should be limited or blocked for a
while by considering memory or disk capacity on the
client node.

e Fault-tolerant mechanism

From most application users, the application program
must be kept running despite occurrence of faults. The
failed task should be resubmitted to another live server
without returning an error to the application. After the
server node is back online from the fault, the remote
program should be restarted, and a certain number of
servers should be maintained as a computational envi-
ronment. In order to improve task processing through-
put, duplicated task assignment is expected. The log-
ging function will also be useful for both users and sys-
tem administrators to find the cause of the fault.

3. Design and implementation of a Task Farm-
ing API

In this section, design of the Task Farming API is de-
scribed, and implementation of it using the latest Ninf-G as
a GridRPC system, is introduced.

3.1. Design

e As a pre-process of the Task Farming, remote initial-
ization of each server program is supported. When the
initialization method is prepared on a remote, a client
program can register the method as the initialization
method. The parameters for the method are also regis-
tered at the same time.

e Each remote program can be given an ID by the client
program. The client program can specify the destina-
tion of the RPC with this ID. This function is left for
some applications to take care of their RPC destina-
tions by themselves.

e By watching waiting tasks and monitoring the avail-
ability of servers, tasks are assigned to an appropriate
destination. However, the range of the task assignment
is limited so as not to use up all memory space, and to
achieve the best performance.

e In case a fault happens, a new task is not assigned to
the affected server, and the failed task is resubmitted to
another live server automatically.

e When a node is back, the remote program is auto-
matically restarted and initialized by the initialization
method, which is registered in the client library.

e When the number of unprocessed tasks is few, a func-
tion to assign one task to multiple servers is supported.

3.2. GridRPC API provided by Ninf-G

The details of the Ninf-G are introduced before ex-
plaining our implementation of the Task Farming API. The
Ninf-G has been developed by AIST (National Institute of
Advanced Industrial Science and Technology, Japan) and
TITECH (Tokyo Institute of Technology, Japan). The Ninf-
G is a reference implementation of the GridRPC. Several
kinds of applications have been implemented with Ninf-
G since November 2002, when version 1.0 was released.
Through those evaluations, performance, scalability and
stability have been improved[9, 11]. Moreover, extended
APIs and functions, which are not defined in the GridRPC,
are added to the Ninf-G to meet requirements from the ap-
plication side.

By specifying an option in the configuration file, a Ninf-
G application programmer can handle timing of data trans-
fer in an asynchronous function, enable compressed com-
munication, and use a heartbeat function to achieve the best
performance and stability. Normally, a default value is set,
but the value just helps users to run their applications with
more stability. Since the user who needs the best perfor-
mance must care about the configuration, it is expected that
these functions be hidden inside of the higher functional li-
brary.

As for the others, the Ninf-G original APIs are provided
with an ”_np” suffix. There are 3 major extensions. 1) A
function to start multiple remote programs by one call, 2) A
function to share a variable between more than 2 RPCs in
the remote program (Remote-object function), 3) A func-
tion to stack the arguments of an RPC and to execute the
RPC with them. A main reason to have to use 1) is that
Ninf-G is built on the Globus Toolkit. On the other hand, 2)
and 3) are issues related to other GridRPC systems. 2) and
3) are implemented differently on each of them.

3.3. Implementation

An overview of our implementation is shown in Figure
1. Because Ninf-G works on Globus, the Globus gatekeeper
starts a remote program, which is called a Ninf-G server,
through a local batch system. In consideration of the per-
formance and the stability of Globus version 2.x/3.x, we
use a tentative method to boot multiple remote programs by
one function call of the GRAM (Grid Resource Allocation
Manager) client API. This is implemented in the Ninf-G as
function 1), which is explained in the previous subsection.
In calling the booting function, a function handle array is re-
turned from the Ninf-G. Each function handle that belongs
to the same function handle array is taken to pieces and put
into a server status pool. A handle of the server that has
just started is stored in the Down pool. During execution
of the initialization method on the server, the handle is in

GridRPC client program

| Function handle array | |Handle array |Handle array|
¢ <Cluster1> Y < Cluster 2 > ¢ < Cluster 3>
Remote GRAM server | | GRAM serv. | GRAM serv.
cluster 3 3 .
| gsub for invoking servers | qsub gsub
Ninf-G
server

Manage Ninf-G servers with 4 states to assign a task
- Self scheduling based on execution information
- Avoid assigning a task to a "down" server

. 4

Down (C\uster 1) (Cluster Z)(Cluste@

(initializing) —m=-(_1dle)_r Tasking
~

I 0000000+
. Assign a task
Waiting task queue

Figure 1. An overview of the Task Farming API

the Initializing state. The handle is stored in a global Idle
pool after initialization. All handles are arranged by the or-
der that initialization or task execution is done. Based on the
user’s preference, the handles are rearranged by the order of
the performance achieved according to the RPC execution
information. A handle indicating which server is tasking is
stored in the Tasking pool. A task is also managed with a
single queue and the task information is placed in the queue
in the order that the task is submitted from an application
program. The first task is assigned to the server whose han-
dle is first in the Idle pool. Initialized data is utilized in
the task execution, which is realized by function 2) in the
previous subsection. A handle of a server with a fault goes
back to the Down pool. When the number of down servers
increases over a certain ratio, the function tries to restart all
the servers that belong to the same function handle array.

Additionally, a higher API, such as the Task Farming
API, might provide some functions that have an arbitrary
number of arguments. This is not possible to implement
with the End-User API, but the GridRPC working group has
started discussion about standardizing the Argument Array
API set, as shown in Figure 2. The Argument Array API set
is a redesign of function 3) in the previous subsection. Since
the API set allows programmers to create RPC arguments
from a va_list, the Task Farming middleware separates task
submission from an application program and task execution
on the server, in order to control task execution inside of the
Task Farming API library.

/* Initialization of an argunment array */

grpc_error_t grpc_arg_array_init(
grpc_function_handl e_t * handle,
grpc_arg_array_t * array);

/* Initialization of an argument array fromva_list */
grpc_error_t grpc_arg_array_init_with_va_list(
grpc_function_handl e_t * handle,
grpc_arg_array_t * array,
va_list list);

/* Put an argunent pointer in the array */
grpc_error_t grpc_arg_array_put(
grpc_arg_array_t * array,
int index,
void * item;

/* Get an argunment pointer fromthe array */
grpc_error_t grpc_arg_array_get(
grpc_arg_array_t * array,
int index,
void ** itemptr);

/* Asynchronous RPC with the argunment array */

grpc_error_t grpc_call _arg_array_async(
grpc_function_handl e_t * handl e,
grpc_sessionid_t * sessionld,
grpc_arg_array_t * array);

Figure 2. Major Argument Array APIs

3.4. API

Figure 3 shows our proposed API set. First, a client pro-
gram calls grpc_init() with a configuration file that describes
the hostname of the front-end of the cluster to be used, the
full path to a remote executable, and the number of servers
to be started in the cluster. Parameter sched is a structure
which includes task assignment policy, and parameter ft
is another structure which includes a policy for the fault-
tolerant mechanism. Next, grpcg_remote_init() should be
called to boot the remote programs. The number of remote
programs is specified by num_pe and the cluster to be used
is given in the configuration file. In grpcg_remote_init(),
func is the name of the initialization method, the rest are ar-
guments of the method. This is an overview of registration
of the initialization method in start/restart of the servers.
The initialization method is processed inside of the library.
The client program can call grpcg-remote_init_n() instead
of grpcg-_remote_init(). This function sets an ID for each
server and registers a different initialization method to be
assigned to each server. The ID is an integer and is given as
server_id in Figure 3.

There are 4 kinds of task submission APIs in our set. The
most common API is grpcg-submit(), in which program-
mers only have to specify a main calculation method of the
task and the arguments. The submitted task will be assigned
to an appropriate destination by the Task Farming library.
When programmers want to specify the destination, they
can use grpcg-submit_n() to indicate the destination with an
ID that is assigned at grpcg_remote_init_n(). Some applica-
tions want to give a reference pointer to each task and to

/* Initialization and finalization of the Task Farm ng
library */
int grpcg_init(char *conf, sched_attr_t *sched,
ft_attr_t *ft);
int grpcg_fin();

/* Invocation and halt of a renpte program
(Ni nf-G server) */

int grpcg_renote_init(int numpe, char * func, ...);
int grpcg_renote_init_n(int server_id, int num pe,
char * func, ...);

int grpcg_renote_fin(int numpe);
int grpcg_renote_fin_n(int server_id, int numpe);

/* Task submi ssion */
int grpcg_subnit(char * func, ...);
int grpcg_submt_n(int server_id, char * func, ...);
int grpcg_submt_r(void * ref, char * func, ...);
int grpcg_submt_nr(int server_id, void * ref,

char * func, ...);

/* Wait and cancellation of a submtted task */
int grpcg_wait_all();

int grpcg_wait_any(int * task_id, void ** ref);
int gprcg_cancel (int task_id);

Figure 3. Our proposed Task Farming API

use it in the post-process. grpcg-submit_r() provides a func-
tion to store the pointer for that purpose. grpcg-_submit_nr()
is a combination of grpcg_submit_n() and grpcg_submit_r().
There are 2 APIs used to wait for a task. grpcg_wait_all() is
used to wait for all tasks. grpcg_wait_any() is used to wait
for the task that is completed the earliest. Server rearrange-
ment based on the RPC execution information only operates
at the end of grpcg_wait_all(). This will have an effect on the
next farming step in the client program.

grpcg-remote_fin() is used to finalize the remote program
and grpcg-fin() is used to finalize the Task Farming library.

3.5. Sample code from the Task Farming API

A code sample for using our proposed Task Farming API
is shown in Figure 4. This code is a reimplementation of
the ED (Embarrassingly Distributed) benchmark, which is
defined in the NAS Grid Benchmark[7]. The ED doesn’t
require an initialization method, and so the second argument
of grpcg_remote_init() is null. In the Task Farming part, the
S-class SP is a task and its task number is given with an " &i”
argument that becomes a parameter used to execute the SP.
Other arguments of the task in submission are static values.
The sample program submits "numTask” tasks with those
arguments and just waits until all of them are completed.

Compared with End-User API programming, Task
Farming programming is simple because the destination of
the task, resource management, and error handling are com-
pletely hidden from the application code. grpcg-submit()
actually calls grpc_call_async() of the End-User API in-
side the Task Farming library, but grpcg_submit() saves the
RPC request once and invokes grpc_call_async() with the
proper destination at the appropriate time. Similarly, gr-

rc = grpcg_init("servers.list", &sched, NULL)
if(rc !'= GRPCX_OK){

perror("grpcg_init() failed.");

exit(1);

grpcg_renote_init(NUM_PES, NULL);

for(i=0; i<nuniask; i++){
grpcg_submit("SP.S", "SP", &npbd ass, &ngbd ass,
&ascii, "ED', &, &w dth, &depth,
&pi d, &verbose, &filter,
&numl nput, &nuntut put, &ngbBin,
&reportfil]);
}

rc = grpcg_wait_all();

grpcg_renote_fin(NUM_PES) ;
grpeg_fin();

Figure 4. A sample application code of the
Task Farming API

pcg-wait_all() calls grpc_wait_any() inside the library, but
grpcg-wait_all() only returns after all tasks are completed or
a critical error happens, while grpc_wait_any() returns upon
detecting any RPC error. Thus our Task Farming library al-
lows programmers to concentrate on parameter generation
or post-processing of the farming.

Our proposed API set can be applied to many Task Farm-
ing applications, whose each task has no dependencies, ex-
cept one dependency between initialization and main cal-
culation. Some applications, such as the branch and bound
method, however, might not fit into our API framework if
data communication for bounding is required outside of the
task execution. Because the proposed APIs insist on hiding
task destination and timing of data transfer, it is hard to ap-
ply the APIs to a program that wants to identify them. It is
obviously better for those applications to use the End-User
API set.

4. Issues for developing a higher functional
middlewar e suite

In this section, several issues for developing a higher
functional middleware suite such as the Task Farming soft-
ware and possible solutions involved with the GridRPC
standardization, are pointed out.

4.1. Ninf-G extensions

The Ninf-G-specific APIs are shown in Figure 5, except
the Argument Array API set. First, a remote object to share
data between multiple RPCs is utilized to implement a re-
mote initialization. The remote object achieves this by stor-
ing initialized data inside of the remote server and allowing
the next RPC to refer to the same data.

/* Multiple starts and halts of a renote programthat
impl ements a renote object function */

grpc_obj ect_handl e_array_init_np();

grpc_obj ect_handl e_array_destruct_np();

/* Retrieval of the data transfer tine and renote
calculation time of the RPC */

grpc_get _info_np();

/* Error ouput */
grpc_perror_np();

Figure 5. Ninf-G’s extended GridRPC APIs
that are utilized for implementation of our
Task Farming API library

Second, the multiple-booting method is utilized to
achieve high performance. As previously mentioned, the
main cause of low performance is that the Globus doesn’t
show enough performance and stability. Keeping perfor-
mance up, however, is important for practical execution of
scientific applications. In calling an asynchronous RPC,
the "transfer_argument” parameter of the Ninf-G is config-
ured as "nowait.” This option keeps the asynchronous RPC
from blocking until all of the RPC arguments are trans-
ferred to the remote. In the current GridRPC, this option
depends on implementation of each GridRPC system. For
example, NetSolve provides one option such that the asyn-
chronous RPC function returns after data transfer is com-
pleted. Because of that, the Task Farming feature of Net-
Solve cannot achieve sufficient performance. In this study,
the RPC arguments were managed inside of the middleware,
and blocking/non-blocking was appropriately selected by
the middleware.

The ordering of the remote server in the Idle pool
makes use of the execution information of the last RPC.
grpc_get_info_np() is used for retrieving the information
measured by the Ninf-G. The function returns the transfer
time of the input data and the output data of the RPC, and
the execution time of the RPC on the remote, by the session
ID that is assigned to the RPC.

These extensions are necessary to implement our pro-
posed Task Farming API set. The remote object might be
implemented another way and should be discussed along
with the Data Handle API set. Booting multiple servers
with one call depends on the implementation of Globus.
Those two issues are beyond the scope of this paper and
they should be studied and discussed more. On the other
hand, standardization of non-blocking data transfer and a
method to retrieve execution information would be widely
useful.

4.2. Requirements for an Argument Array API

This paper assumed that the Argument Array API is
available as a Middleware API set of the GridRPC. The pro-
posed Argument Array API stores only pointers for the ar-
guments and it does not copy the data itself. This is inconve-
nient for developing higher functional middleware, for two
reasons.

The first reason is that a higher API should not require
application programmers to rewrite the data that is passed to
the library by the Argument Array API. Because the End-
User API forces programmers to manage a session of the
RPC, they can avoid rewriting data consciously. Task Farm-
ing, however, hides the session and it is inappropriate that
programmers need to care about a covered session’s status.

The second reason is that it is hard to implement du-
plicated task assignment. If arguments can be copied in-
side of the library, output arguments from the remote will
also be duplicated. Each task can just receive the result at
grpcg-wait*(), store the result on the appropriate memory
space, and the result that was completed earlier is simply
returned to the application. Otherwise, another method or
API to lock the data receive should be included in the Ar-
gument Array API set.

Therefore, the copy function for the RPC arguments is
expected to be added to the Argument Array API set. Of
course, the client node must have enough memory space to
store a copy of the arguments and this might cause insuffi-
cient memory capacity. Our proposed API, however, has a
function to limit the number of task submissions, and it is
possible to incarnate automatic tuning of limiter values. Be-
sides, some scientific applications treat the RPC arguments
as a file. In our results we found, it is much more advanta-
geous to provide the copy function in the Argument Array
API set.

5. Summary and future work

In this paper, the Task Farming API set was designed
as a higher functional middleware suite over the GridPRC.
The API set is implemented with the End-User API of the
GridRPC, some Ninf-G extensions, and the Argument Ar-
ray API. In order to meet the requirements of the Task Farm-
ing API, a method to retrieve execution information for the
RPC and a data transfer option are expected to be standard-
ized in the GridRPC. Furthermore, it was found that the
copy function of the RPC arguments is necessary as part of
the requirements for the Argument Array APl. We plan to
implement and evaluate a full functional Task Farming API
with an advanced Argument Array API, and would like to
gather feedback from scientific application users.

Acknowledgements

We would like to thank to Dr. lkegami (AIST) and
Mr. Takemiya (AIST) who gave us many comments on our
work.

A part of this research was supported by a grant from the
Ministry of Education, Sports, Culture, Science, and Tech-
nology (MEXT) of Japan through the NAREGI (National
Research Grid Initiative) Project.

References

[1]

(2]

(3]

[4]
5]

[6]

[7]

(8]

9]

[10]

[11]

D. Amnold, D. Bechmann, and J. Dongarra. Request Se-
quencing: Optimizing Communication for the Grid. Lec-
ture Notes in Computer Science: Proceedings of 6th Inter-
national Euro-Par Conference, 1900:1213-1222, 2000.

D. Arnold and et.al. Users” Guide to NetSolve V1.4.1. In-
novative Computing Dept. Technical Report ICL-UT-02-05,
University of Tennessee, 2002.

H. Casanova, M. Kim, J. S. Plank, and J. J. Dongarra. Adap-
tive Scheduling for Task Farming with Grid Middleware.
High Performance Computing Applications, 13(3):231-240,
1999.

GGF. http://www.gridforum.org/.

H. Nakada, Y. Tanaka, S. Matsuoka, and S. Sekiguchi. A
Task-Farming API on GridRPC and its implementation (in
Japanese, abstract in English). IPSJ S G Technical Report,
2003(102):61-66, 2003.

Ninf project. http://ninf.apgrid.org/.

Rob F. Van der Wijngaart and M. Frumkin. NAS Grid
Benchmarks Version 1.0. Technical Report NAS-02-005,
NASA Ames Research Center, 2002.

K. Seymour and et al. Overview of GridRPC: A Remote
Procedure Call API for Grid Computing. In M. Parashar, ed-
itor, Proceedings of the 3rd International Workshop on Grid
Computing, pages 274-278, 2002.

H. Takemiya, K. Shudo, Y. Tanaka, and S. Sekiguchi. Con-
structing Grid Applications Using Standard Grid Middle-
ware. Grid Computing, 1:117-131, 2003.

Y. Tanaka, H. Nakada, S. Sekiguchi, T. Suzumura, and
S. Matsuoka. Ninf-G: A Reference Implementation of RPC-
based Programming Middleware for Grid Computing. Grid
Computing, 1(1):41-51, 2003.

Y. Tanimura, T. Ikegami, H. Nakada, Y. Tanaka, and
S. Sekiguchi. Implementation of Fault-Tolerant GridRPC
applications. In Workshop on Grid Applications: from Early
Adapters to Mainstream Users, 2005.

