
Speed-up Techniques for Computation of Markov Chain Model
to Find an Optimal Batting Order

Kiyoshi Osawa Kento Aida
{osawa,aida}@alab.ip.titech.ac.jp

Abstract

In this paper, we propose speed-up techniques for com-
putation of the Markov chain model to find an optimal bat-
ting order in a baseball team. The proposed technique par-
allelizes computation of the Markov chain model for bat-
ting orders, where probabilities to obtain scores by the bat-
ting orders are computed using the D’Esopo and Lefkowitz
model, on the Grid. In addition, the proposed technique
improves the performance by sharing parameters about
batting orders. On a Grid environment, load balancing
is appropriately performed considering performances of
computing resources. The experimental results show that
the proposed technique finds the optimal batting order in
27,216,000 batting orders for 3,278 seconds on the Grid
testbed.

1 Introduction

Grid computing is new computing technology, which
provides huge computational power with low costs by
employing computing resources geographically distributed
over the internet. The high cost-effectiveness drives re-
searchers to solve large-scale problems, which have not
been solved before due to lack of computational power. Par-
ticularly, researchers in the operations research community,
which are not deeply related to high-performance comput-
ing, begin to take an interest in the Grid computing technol-
ogy.

The problem of finding an optimal batting order is to
solve a combinatorial optimization problem[4] to find the
best batting order, which is expected to yield the maximum
score in a baseball game. This problem essentially needs
huge computation time. For instance, even for a small base-
ball team, which consists of nine players, we need to com-
pute expected runs for 9!=362,880 batting orders. Thus,
conventional schemes, such as a Malkov chain approach[1],
are able to get the only near-optimal solution for small-scale
problems of unrealistic problem size. The optimal solution
for the large-scale problem has not been computed.

This paper proposes speed-up techniques for computa-
tion of the Markov chain model to find an optimal batting
order. The proposed techniques reduce computation time of
the problem by performing:

• reduction of computation by sharing common parame-
ters to compute expected runs among multiple batting
orders

• reduction of computation by solving the satisfiability
problem about batter’s capability for fielding positions.

• parallelization of computation on the Grid using
GridRPC

The experimental results on the Grid testbed show that
the proposed techniques significantly reduce the computa-
tion time. Also, the proposed techniques demonstrate that
the optimal batting order of the baseball team, consisting
of 12 players selected form Japanese professional baseball
teams, is obtained for 3,278 seconds on the Grid.

2 The Method to Find an Optimal Batting
Order

2.1 D’Esopo and Lefkowitz Model

In the D’Esopo and Lefkowitz model[1], 25 offensive
states are defined in a half-inning. These states correspond
to the combination of the number of outs (three possibilities:
zero, one, or two outs) and the occupation of bases (eight
possibilities: none, a runner on only first base, runners on
first and second base, and so forth), and the end of the half-
inning when the third out occurs[5]. The state transition
occurs when a batter completes the plate appearance, that
is, it advances runners on the bases or increases the number
of outs.

For each batter, a state transition matrixP is defined
from the batter’s statistics computed by the past records.
The probabilities of state transitions are computed by the
batter’s past records to occur events, a single hit, a double,
a triple, a home run, a walk, and an out. In this paper, we

Table 1. D’Esopo and Lefkowitz runner advance model
Event Probability Rule of runner advance
Single pS A batter moves to first base. A runner on first moves to second base.

Other runners score.
Double pD A batter moves to second base. A runner on first moves to third base.

Other runners score.
Triple pT A batter moves to third base. All runners score.
Home Run pH A batter and all runners score.
Walk pW A batter moves to first base. All runners advance one base if forced.
Out pO All runners do not advance.

employ the D’Esopo and Lefkowitz runner advance model,
which uses events described in Table 1.

In this model, a 25× 25 matrix P is defined for each
batter as (1),

P =




A B 0 0
0 A B 0
0 0 A F
0 0 0 1


 (1)

whereA andB are 8× 8 submatrices represented as (2):

A =




pH pS + pW pD pT 0 0 0 0
pH 0 0 pT pS + pW 0 pD 0
pH pS pD pT pW 0 0 0
pH pS pD pT 0 pW 0 0
pH 0 0 pT pS 0 pD pW

pH 0 0 pT pS 0 pD pW

pH pS pD pT 0 0 0 pW

pH 0 0 pT pS 0 pD pW




B = pOI (2)

In (1) and (2),I denotes an 8× 8 identity matrix andF
indicates an 8× 1 vector as (3):

F = (pO, . . . , pO)T (3)

The first 8 rows in the matrixP represent states when a
batter goes to the plate with no outs. The next 8 rows repre-
sent those with one out and the next 8 rows represent those
with two outs. The 25th row represents the absorbing state,
which corresponds to three outs. Each column represents a
state when a batter completes the plate appearance, respec-
tively.

We assume that a batter performs constantly at any states
with number of outs, and submatricesA andB in rows 9
through 16 ofP present states with one out in common with
those with no outs. Similarly,A andB in rows 17 through
24 ofP present states with two outs.

The rows of matricesA andB correspond to occupation
of bases as shown in Table 2. For example, when a batter

Table 2. The correspondence of matrices
rows to occupation of bases

Row Runners on base
1 empty
2 first base
3 second base
4 third base
5 first and second bases
6 first and third bases
7 second and third bases
8 bases loaded

goes to plate at the beginning of an inning, the state transi-
tion probability from a state for no runners on with no outs
to one for a runner on first with no outs corresponds to the
element on the first row and on the second column. The
state transition occurs when a batter gets a single hit or base
on balls; thus, the value of the probability ispS + pW in the
D’Esopo and Lefkowitz model.

The non-zero elements inA represent probabilities of
events which do not increase the number of outs and ad-
vance on the bases, and those inB represent probabilities
of events which increase the number of outs and do not ad-
vance on the bases. The elements inF represent probabili-
ties of events from two outs to three outs.

Suppose the set ofN batters is represented asS =
{b1, b2, . . . , bk, . . . , bN}(k represents a batter index). A
state transition matrixPk is defined by probabilities like
pS , pD, pT , pH , pW ,andpO, which are derived by statistics
of each batterk. The multiplication of these matrices along
an input batting order allows us to simulate a baseball game.

2

2.2 Calculation of Expected Runs Scored per In-
ning

The state transition matrixPk is decomposed intoP (0)
k ,

P
(1)
k , P

(2)
k , P

(3)
k , andP

(4)
k . MatricesP (r)

k (r = 0, 1, 2, 3, 4)
consist of probabilities to occur events that scorer run(s)
by the batterk, and the following equation is obtained:

Pk = P
(0)
k + P

(1)
k + P

(2)
k + P

(3)
k + P

(4)
k (4)

Suppose the maximum value of runs scored in one inning
is represented asRmax, and the matrix which expresses
runs scored and probability distribution of the states is rep-
resented asU . The rows in the(Rmax + 1) × 25 matrix
U correspond to runs scored in an inning, and columns of
U correspond to 25 states defined by the number of out and
occupation of bases. Suppose the initial value ofU is rep-
resented asU0. Since no runs scored and no runners on
bases at the beginning of an inning, the element ofU0 on
first row and on first column is 1, and others are 0. Suppose
U whenn batters complete the plate appearances since the
beginning of an inning is represented asUn, this is defined
as (5):

Un|i =
4∑

r=0

Un−1|(i−r)P
(r)
k (i = 1, 2, . . . , Rmax + 1)

(5)
Here,Un|i expresses thei-th row ofUn, andk expresses

a batter index. The indexk is incremented withn and
changes in a cyclic way between one to nine, which is the
number of batters in a batting order. As the multiplication
shown in (5) are repeated, the sum of probabilities in the
25th column ofUn converges on 1 whenn reaches the in-
finity. Suppose the element on thei-th row and thej-th col-
umn in U is represented asui,j , the expected runs scored
per an inning,ER, is defined as (6):

ER =
Rmax+1∑

k=1

(k − 1)× uk,25 (6)

Composing batting orders from the set of battersS and
defining the state transition matrixPk for each batterk al-
low us to calculateER.

2.3 Calculation of Expected Runs Scored per
Game

Suppose the probability that thei-th batter in a batting
order leads off a certain inning and thej-th batter leads off
the next inning is represented astij , and the expected runs
in that case is represented aseij(Figure 1). These values are
obtained from the 25th column ofUn in each multiplication
shown in (5). Suppose the probability that then-th batter in

���

���

���

���

���

��	

��

���

��

���

���

���

���

���

��	

��

���

��

� � � ����� �
� � � ����� �

� � � ����� �
� � � ����� �

� � � ����� �

� � � ����� �

� � � ����� �
� � � ����� �

� � � ����� �
� � � ����� �

� � � ����� �

� � � ����� �

���

���

���

���

���

��	

��

���

��

�

�

�

�

�

�

�

�

�

 "!�# # $ %'&
(*),+�-�)
. % +/-�0

. %�%'$ %'&
� � �

121

Figure 1. Definition of parameters tij , eij

a batting order leads off them-th inning is represented as
pm,n, and the accumulated expected runs through the game
in that case is represented asam,n. These parameterspm,n

andam,n are defined as (7) and (8):

pm,n =





1 (m = 1, n = 1)
0 (m = 1, n = 2, 3, . . . , 9)
9∑

k=1

pm−1,ktkn

(m = 2, 3, . . . , 10, n = 1, 2, . . . , 9)

(7)

am,n =





0 (m = 1, n = 1, 2, . . . , 9)
9∑

k=1

pm−1,k

pm,n
tkn(am−1,k + ekn)

(m = 2, 3, . . . , 10, n = 1, 2, . . . , 9)

(8)

From these values, the expected runs scored per a game is

expressed by
9∑

k=1

p10,ka10,k. Calculating the expected runs

scored per a game for each batting order organized from the
set of battersS allows us to find the optimal batting order.

3 A Speed-up Technique to Calculate Ex-
pected Runs Scored

3.1 Parameters Sharing among Multiple Batting
Orders

Since batters go to the plate in a cyclic way in a base-
ball game, calculation parameters,tij andeij , for the bat-
ting order (b1, b2, . . . , b9) can be used for the batting or-
der (b2, b3, . . . , b9, b1) by shifting the result for the order

3

�����������
	��
�
���
���������
�
�����

�����������
	��
�
���
�������
���������
�����������
	��
�
���
���������
�
�����

��� ������� � "!$# %&��'�!$# %

(�)�*+*-, .�/10�2&354�2 6�487:9�, 2&4;3�<�)=2�)?>@4=*A4�2CB

��� ������� � "!$# %&��'�!$# %
��� ������� � "!$# %&��'�!$# %

D�, >@4

�����������
	��
�
���
���������
�
�����

����	
���
�
���E���������
���
�E�����=�
��������	
�
���
�
�����������
�
�
���C�

��� ������� � "!$# %&��'�!$# %
 "!$# %&��'�!$# %
 "!$# %&��'�!$# %

D�, >@4

F)8GIH=9JGI)=*-,IKL.1*I,+>@4NM ��� �����O� � 1!O# %&��'
!O# %P[]
Figure 2. Speed-up by sharing common pa-
rameters

(b1, b2, . . . , b9). In particular,pm,n(2 ≤ m ≤ 10) for the
batting order (b1, b2, . . . , b9) is calculated under the condi-
tion that p1,1 = 1, p1,n = 0(2 ≤ n ≤ 9) as shown in
(7). Also,pm,n for the order (b2, b3, . . . , b9, b1) can be cal-
culated under the condition thatp1,2 = 1, p1,n = 0(n =
1, 3 ≤ n ≤ 9) using tij and eij , which have been com-
puted for the order (b1, b2, . . . , b9). Similarly, pm,n for the
batting orders obtained by shifting the results. For example,
pm,n for the order (b3, b4, . . . , b9, b1, b2) can be calculated
by only changing the initial value ofp1,n without calculat-
ing tij andeij each time.

Since the computational complexity ofpm,n andam,n

are very small in comparison with that oftij andeij , and
nine batting orders can use parameterspm,n andam,n in
common, we can expect about nine times speed-up in com-
parison with the case thatpm,n andam,n is calculated each
time (Figure 2).

3.2 Investigation of Batters’ Capability for Field-
ing Position

Suppose the number of elements in the set of battersS is
nine, the expected runs scored need to be calculated for 9!
(or 362,880) batting orders to determine the optimal batting
order. If the number of elements inS increases, the num-
ber of batting orders increases according toO(N9). For
example,10P9(= 3, 628, 800) expected runs scored need to
be calculated for 10 batters,11P9(= 19, 958, 400) expected
runs scored for 11 batters, and12P9(= 79, 833, 600) for 12

���� ��������
	��	
�	�� ���� ��������
	��	
�	��

���
�����

������

�������
�

��
������

���

���

��������

�
������

����
����

�����

�

���
�����

������

�������
�

��
������

���

���

��������

�
������

����
����

�����

�

���

���

�
�

�����

���

���

���

���

���

���

���

�
�

�����

���

���

���

���

���

� �"!#!%$ &('
) *,+.-/*

0
132,$!%$415&

Figure 3. Fielding Position Table

batters.
The computation to find an optimal batting order is fur-

ther reduced by solving the satisfiability problem about bat-
ter’s capability for fielding positions. In this problem, bat-
ter’s capability for fielding positions is given by the fielding
position table. By checking the feasibility of batting orders,
or checking if batters in the order fill nine fielding positions,
the computation for unfeasible batting orders can be omit-
ted.

3.2.1 Fielding Position Table

Figure 3 shows an example of the fielding position table.
Elements in the table indicate a batter’s capability of field-
ing position. An element equals one if the batter is capable
to take the position indicated by the column, and it equals
to zero if he/she is not capable. For example in Figure 3,
the batterb1 can play as the pitcher(P) but cannot play in
other fielding positions. Defensive skill, such as range of
defense, strength of arm, and catch reliability, are not taken
into account in the table.

3.2.2 Investigation of Feasible Batting Orders

The feasibility of batting orders to fill nine fielding posi-
tions is investigated by generating the tree and finding the
feasible path on the tree. The tree has hierarchical structure
as an example in Figure 4, the feasibility is investigated as
follows:

First, the leftmost column in the fielding position table,
pitcher position(P), is assigned to the root node on the tree.
The table indicates that the fourth batter,b1, can fill the
pitcher position, then the fourth path (from the leftmost
path) originating from the root node is chosen. Next, the
next position, the catcher(C), in the table is assigned to the
node under the fourth path. Here, because the fourth batter
has been already occupied by the pitcher, the fourth path

4

�

�

��� �

� �

�

�

����

�����

��� � �

�

�

����

�����

��� � �

	�

������� ��������� �����

Figure 4. The method to determine whether
batters in lineup fill all positions

under the node C is marked with “×”. The table in Figure
3 indicates that the first batter,b3, can play as the catcher;
thus, the first path originating from the node C is chosen and
the 1B is assigned to the node under the first path. For paths
originating from the node 1B, the first and fourth paths have
already occupied, and there is no feasible path. In this case,
we backtrack to the ancestor node, C, and choose other fea-
sible path.

The batting order is feasible if a trace on the tree reaches
the node RF, the position in the rightmost column in Fig-
ure 3. If there are no feasible paths to reach the node RF,
the batting order is not feasible and the computation for the
order can be omitted.

In the previous work[3], it is necessary to extract bat-
ters in view of the fielding ability by hand. We propose a
method to automate the process to determine whether bat-
ters in lineup fill all positions. And also, it reduces the com-
putational complexity in comparison with that for all possi-
ble batting orders.

3.3 Parallelizing Computation and Load Balanc-
ing in Execution

The proposed technique parallelizes the computation on
the Grid. Load balancing is performed by dispatching com-
putation of batting orders proportionally to performances of
computing resources. Since the calculation for each batting
order is independent, the calculation can be distributed over
multiple PCs to reduce the time to obtain an optimal bat-
ting order. As the scale of the problem increases, the Grid
environment is needed as a computing platform to address
it. Generally, the Grid is composed of computing resources
which have heterogeneous computational powers, and effi-
cient load balancing is needed in order that computing re-
sources are utilized effectively.

Load balancing in the proposed technique is performed
in two phases. In the first phase, in order to measure com-
putational power for each computation node, each computa-
tion node calculates expected runs scored for a small subset
of batting orders. In the second phase, the size of computa-
tion, or the number of batting orders, assigned to each com-
putation node is calculated by the measured computational
power.

SupposeN means the number of batters in a team and
s(NP9) denotes the number of feasible batting order, which
is defined in Section 3.2.2. The number of batting orders to
compute their expected runs scored is reduced tos(NP9/9)
by sharing common parameters among batting orders as de-
scribed in Section 3.1. In the first phase,f × s(NP9/9)/M
batting orders is assigned to each computing nodes to mea-
sure the performance, whereM denotes the number of com-
puting nodes andf means the constant(0 < f < 1) to de-
fine the ratio of batting orders used for the measurement.
Then, the number of computing nodes assigned to the com-
puting nodek in the second phase is defined byc(k).

St =
∑

k

1
T (k)

c(k) = s(NP9/9)× 1/T (k)
St

(9)

Here, T (k) means the elapsed time to compute forf ×
s(NP9/9)/M batting orders in the first phase.

4 Performance Evaluation

In this section we present performance evaluation of the
proposed techniques on the Grid testbed. The Grid testbed
used in the experiment consists of two PC clusters dis-
tributed over two sites in Japan. These are the Blade clus-
ter1, which consists of 36 computation node and set up in

1Each node has PentiumIII 1.4GHz, 512MB memory. The OS is Red
Hat Linux 7.1(Kernel 2.4.10), the compiler is gcc 2.96, and the compile
option specified for optimization is -O3.

5

Tokyo Institute of Technology, and the F32 cluster2, which
consists of 64 computation node and set up in Advanced
Industrial Science and Technology. We developed the ap-
plication program to find the best batting order based on the
D’Esopo and Lefkowitz model and implemented it on the
Grid testbed using GridRPC middleware, Ninf-G 2.3.0[6].

Ninf-G is reference implementation of GridRPC API.
The client program is able to invoke server programs,
or executables, on remote computing resources using the
Ninf-G client API. Ninf-G is implemented on the Globus
Toolkit[2]. When the client program starts its execution, it
accesses MDS to get interface information to invoke the re-
mote executable. Next, the client program requests GRAM
to invoke the remote executable. In this phase, authenti-
cation is performed using GSI. After the invocation, the re-
mote executable connects back to the client to establish con-
nection. Finally, the client program dynamically encodes its
arguments according to the interface information, and trans-
fers them using Globus I/O and GASS.

To execute the product of matrix-vector, which is the ker-
nel of computation, we utilize ATLAS[7], which is automat-
ically tuned numerical calculation library.

4.1 Effects of Sharing Common Parameters
among Batting Orders

To verify the effect of sharing common parameters,tij
and eij , among batting orders, we compare the elapsed
times to calculate expected runs scored in cases wheretij
andeij are shared and not shared. Suppose the number of
elements inS is 10, and all batting orders composed from
S fill all positions.

The elapsed times in each case with 40 nodes on F32
cluster is shown in Table 3. As mentioned in Section 3.1,
the computational complexity ofpm,n andam,n are very
small in comparison with that oftij andeij . Because bat-
ting orders can share parameterstij andeij , 8.81 (close to
9) times speed-up is obtained.

Table 3. The effect of sharing common param-
eters

calculatetij , eij usetij , eij speed-up
for each order in common ratio

3,258(sec) 370(sec) 8.81

2Each node has Xeon 3.06GHz, 4GB memory. The OS is Red Hat
Linux 8.0(Kernel 2.4.24), the compiler is gcc 3.3.3, and the compile option
specified for optimization is -O3.

Table 4. Statistics of 12 batters
Batter AVG HR SLG OBP

b1 .284 8 .436 .351
b2 .305 7 .480 .349
b3 .222 16 .472 .336
b4 .296 5 .389 .326
b5 .298 13 .496 .363
b6 .276 19 .569 .374
b7 .280 3 .366 .360
b8 .324 1 .421 .402
b9 .333 17 .632 .435
b10 .344 21 .688 .418
b11 .340 15 .582 .401
b12 .304 8 .480 .406

AVG indicates an abbreviation of Batting Average,
HR indicates Home Runs,

SLG indicates Slugging Percentage,
and OBP indicates On-base Percentage.

Table 5. Optimal batting order at June 23, 2005

Batter AVG HR
1 b12 .304 8
2 b9 .333 17
3 b11 .340 15
4 b10 .344 21
5 b6 .276 19
6 b1 .284 8
7 b3 .222 16
8 b2 .305 7
9 b4 .296 5
Expected runs scored: 6.88

4.2 Results on the Grid Testbed

To verify the effect of load balancing on the Grid, we
conduct the experiment on the Grid testbed consisting of
30 nodes on the Blade cluster and 40 nodes on the F32
cluster. We choose 12 batters who showed good perfor-
mance from April to June 23, 2005 in the Central League
of NPB(Nippon Professional Baseball). The batters’ bat-
ting statistics and fielding parameters are shown in Table 4
and Figure 5, respectively. The computed optimal batting
order and expected runs scored by the order are shown in
Table 5.

The number of all possible batting orders composed of
12 batters is12P9 = 79, 833, 600. By sharing common
tij and eij , the number of batting orders to be computed
is 12P9/9 = 8, 870, 400. Among these batting orders,

6

���� ��������
	��	
�	�� ���� ��������
	��	
�	��

������
�

�������

�
������

������

�
�����

������

��
�����

���
����

����
���

����
���

�����
��

���
��
�

������
�

�������

�
������

������

�
�����

������

��
�����

���
����

����
���

����
���

�����
��

���
��
�

���

���

�����

�����

�����

���

���

��

��!

��"

���

�#�

���

���

�����

�����

�����

���

���

��

��!

��"

���

�#�

$&%�'('*),+.-

/�01-32 '42(065

Figure 5. Batters’ capabilities for positions

the number of orders which fill all positions is 3,024,000
(= s(12P9/9)).

To verify the effect of load balancing, we compare the
elapsed times to calculate expected runs scored in cases
where the load balancing is performed and computation is
evenly distributed over computing nodes. The elapsed times
and the breakdown of them in each case are shown in Ta-
ble 6. Before actual calculation, computation to measure
computational power of each node is conducted in the first
phase. The ratio of the calculation in the first phase, orf
is set to 0.05. When we do not apply load balancing, the
calculation in the first phase is not conducted, and simply
s(12P9/9)/M batting orders (s(12P9/9) is the number of
target batting orders,M is the number of all computation
node) are evenly distributed over all nodes and expected
runs scored are calculated at each node.

The average number of batting orders assigned to com-
putation nodes by applying load balancing, the average
elapsed times for each PC cluster and the maximum elapsed
times are shown in Table 7. Figure 6 and Table 7 presents
that the average elapsed times between PC clusters are sim-
ilar and that the whole elapsed time can be reduced by load
balancing.

5 Conclusion

In this paper, we report speed-up techniques for compu-
tation of the Markov chain model to find an optimal batting
order in a baseball team.

The proposed techniques reduce computation time by:
sharing common parameters among multiple batting orders,
omitting computation for unfeasible batting orders, paral-
lelizing computation on the Grid. The experimental results

Table 6. The effect of load balancing
Load balancing (sec)
Off On

Trial 0 618
Actual 4,441 2,503
Other 91 157
Total 4,532 3,278

Speed-up 1.00 1.38

(Trial indicates the elapsed time
to measure computational power,
Actual indicates the elapsed time
to compute expected runs scored,
Other indicates the elapsed time

to initialize, terminate, synchronize, etc.)

��������� �
	��
�
�
����������� 	������������ � �

!
" !�!
#
!�!�!
" !�!
$
!�!�!
$ " !�!
%
!�!�!
% " !�!
&�!�!�!
& " !�!
" !�!�!

' � � ' �(���	����)	�� 	���*�� �
+

,- .
/0
12
34
51
6 0
1 78

'�9 �����
: * 9�; 	��
��� � 	��

< '=9 ���
� < *
��� 9 	�� ��� � ��� 9 � 	�� � >
	 9 � ����? 9 �
� �@� �
	 9 � ����?
	������BAC��*���� ����� >
	 9 � ����D

Figure 6. The effect of load balancing

show the effectiveness of the proposed techniques. First, by
sharing common parameters, we attain 8.81 times speed-up.
Next, the investigation of batters’ capability for fielding po-
sitions significantly omits computation for unfeasible bat-
ting orders. Finally, parallelization of the computation on
the Grid allows us to compute large-scale problems and the
run-time load balancing gives 1.38 speed-up compared with
computation with static load balancing. The experimental
results also show that the proposed technique finds the opti-
mal batting order in 27,216,000 batting orders for 3,278 sec-
onds with 70 computation nodes on the Grid testbed. The
results mean that the large-scale problem, which have not
been solved before due to lack of computational power, in
the operations research field can be solved by applying the
proposed techniques, and the exact optimal batting order is
obtained by calculating expected runs scored for all possible
batting orders in the reasonable time.

acknowledgmentWe would like to sincerely thank the
Grid Technology Research Center at the National Institute

7

Table 7. Result of load balancing
Blade F32

Avg. Assigned Order Count 23,597 57,903
Avg. Elapsed Time (sec) 2,196 2,013
Max. Elapsed Time (sec) 2,503 2,213

of Advanced Industrial Science and Technology for
allowing us to use their computing resources for our
experiments.

References

[1] B. Bukiet, E. Harold, and J. Palacios. A Markov Chain Ap-
proach to Baseball.Operations Research, 45(1):14–23, Jan.
1997.

[2] I. Foster and C. Kesselman. Globus: A Metacomputing In-
frastructure Toolkit. The International Journal of Super-
computing Applications and High Performance Computing,
11(2):115–128, Summer 1997.

[3] N. Hirotsu and C. Miyaji. A Mathematical Method to Find
an Optimal Lineup in Baseball Game - A Case Study for All
Japan Team -.Journal of the Operations Research Society of
Japan, 49(6):380–389, June 2004.

[4] R. Horst, P. M. Pardalos, and N. V. Thoai.Introduction to
Global Optimization. Kluwer Academic Pub., 2000.

[5] Major League Baseball. Official Info: Official Rules.
http://mlb.mlb.com/NASApp/mlb/mlb/officialinfo/official
rules/definitionterms2.jsp.

[6] Y. Tanaka, H. Nakada, S. Sekiguchi, and S. Matsuoka. Ninf-
G: A Reference Implementation of RPC-based Programming
Middleware for Grid Computing.Journal of Grid Computing,
1(1):41–51, June 2003.

[7] R. C. Whaley. Automatically Tuned Linear Algebra Soft-
ware(ATLAS). http://math-atlas.sourceforge.net/.

8

