
The Design and implementation of a Fault-Tolerant RPC system: Ninf-C

Hidemoto Nakada
National Institute of Advanced Industrial

Science and Technology (AIST)
1-1-1 Umezono, Tsukuba, 305-8568, Japan

hide-nakada@aist.go.jp

Yoshio Tanaka
National Institute of Advanced Industrial

Science and Technology (AIST)
1-1-1 Umezono, Tsukuba, 305-8568, Japan

yoshio.tanaka@aist.go.jp

Satoshi Matsuoka
Tokyo Institute of Technology,

2-12-1 Ookayama, Tokyo, 152-8550, Japan
matsu@is.titech.ac.jp

Satoshi Sekiguchi
National Institute of Advanced Industrial

Science and Technology (AIST)
1-1-1 Umezono, Tsukuba, 305-8568, Japan

s.sekiguchi@aist.go.jp

Abstract

We describe the design and implementation of a fault tol-
erant GridRPC system, Ninf-C, designed for easy program-
ming of large-scale master-worker programs that take from
few days to few months for its execution in a Grid envi-
ronment. Ninf-C employs Condor, developed at University
of Wisconsin, as the underlying middleware supporting re-
mote file transmission and checkpointing for system-wide
robustness for application users on the Grid. Ninf-C layers
all the GridRPC communication and task parallel program-
ming features on top of Condor in a non-trivial fashion, as-
suming that the entire program is structured in a master-
worker style—in fact, older Ninf master-worker programs
can be run directly or trivially ported to Ninf-C. In contrast
to the original Ninf, Ninf-C exploits and extends Condor
features extensively for robustness and transparency, such
as 1) checkpointing and stateful recovery of the master pro-
cess, 2) the master and workers mutually communicating
using (remote) files, not IP sockets, and 3) automated throt-
tling of parallel GridRPC calls; and in contrast to using
Condor directly, programmers can set up complex dynamic
workflow as well as master-worker parallel structure with
almost no learning curve involved. To prove the robustness
of the system, we performed an experiment on a heteroge-
neous cluster that consists of x86 and SPARC CPUs, and
ran a simple but long-running master-worker program with
staged rebooting of multiple nodes to simulate some serious
fault situations. The program execution finished normally
avoiding all the fault scenarios, demonstrating the robust-
ness of Ninf-C.

1. Introduction

To perform effective computation with unstable and het-
erogeneous resources, such as resources in the Grid, the fol-
lowing characteristics are required for the subject programs:

1. Adapting to computational performance heterogeneity
among the computational resources.

2. Robustness against increase/decrease of computational
resources.

3. Tolerance against and recovery from general faults that
occur, beyond what can be coped with by characteris-
tics 1) and 2).

4. Transparency from 1) - 3) at the programming level

The Master-worker model well exhibits characteris-
tics 1) and 2), as well as 4) (transparency) when cou-
pled with appropriate Grid programming middleware.
The master manages a task queue, and the workers re-
trieve tasks from the master and process them and return
the results to the master. The master-worker model al-
lows graceful increase and decreases of computation nodes,
and adapts well to performance difference among the com-
putation nodes with simple scheduling strategies. It also
is somewhat robust to faults in general since the essen-
tial state of the system can be centralized to the master
program.

In order to program such master-worker applications on
the Grid, we believe that RPC (Remote procedure call)

is quite promising, since existing programs amenable to
master-worker parallelism can easily be adapted to be paral-
lelized, such as search problems, as well as fine level of con-
trol requiring dynamic adaptation required on the Grid can
be programmed easily within each application, such as flex-
ible resource selection in matching subprogram granular-
ity with computational power, exploiting network efficiency
overlapping of master-worker processing and data transfer,
as well as implementing complex worker control strategies
such as workstealing, bounds propagation and search ter-
mination in branch-and-bound algorithms, etc. Several past
work including ours have demonstrated the effectiveness of
master-worker programming on the Grid using GridRPC
middleware such as Ninf [10] and Ninf-G [11, 14], in ap-
plications such as complex numerical optimizations[3, 7],
weather predictions, as well as genomic sequencing.

However, most of the GridRPC-based middleware to
date is insufficient with respect to item 3) above; they have
relied on task retries when faults are detected, being insuffi-
cient for worker tasks of long duration. In fact, in a non-
dedicated Grid environment, repeated failures have actu-
ally known to occur for a variety of reasons, where worker
tasks make little or no progress, almost perpetually repeat-
ing the dispatch-failure cycle. Moreover, with the exception
of Nimrod[5], coping with such situations are not transpar-
ent to the programmer, as explicit task state lists must be
maintained and properly checked. Even Nimrod does not
entirely automate this process as the parameter space where
the master will enumerate over to dispatch worker tasks
must be explicitly specified (as well as this causing the loss
of flexibility mentioned above for GridRPC-based system
as mentioned above.)

Ideally, we will want a GridRPC system where the above
4 characteristics can be implemented in a master-worker
program in a highly dynamic and faulty Grid environ-
ment, with workers that may execute for hours, days, or
even weeks per each task execution. To cope with such re-
quirements, we have designed and implemented a new ver-
sion of our GridRPC middleware Ninf-C, specially tailored
for programming such long-running master-worker appli-
cations on the Grid. Ninf-C employs Condor[9, 1], a high-
throughput distributed job scheduling system developed
at University of Wisconsin, as the underlying middleware
supporting remote file transmission and checkpointing for
system-wide robustness for application users on the Grid.
Ninf-C layers all the GridRPC communication and task
parallel programming features on top of Condor in a non-
trivial fashion, assuming that the entire program is struc-
tured in a master-workder style—in fact, older Ninf master-
worker programs can be run directly or trivially ported to
Ninf-C. In contrast to the original Ninf, Ninf-C exploits
and extends Condor features extensively for robustness and

transparency, such as 1) checkpointing and stateful recov-
ery of the master process, 2) the master and workers mu-
tually communicating using (remote) files, not IP sockets,
and 3) automated throttling of parallel GridRPC calls; and
in contrast to using Condor directly, programmers can set up
complex dynamic workflow as well as master-worker par-
allel control structure that appear in modern master-worker
programs of very large scale such as complex hierarchical
branch-and-bound algorithms [3], replica exchange meth-
ods, etc., with almost no learning curve involved. This is
made possible by the easy-to-use RPC-based programming
interface for master programs, as well as a scientific IDL
(Interface description language) to declare the function in-
terface of the worker functions.

To prove the robustness of the system, we performed an
experiment on a heterogeneous cluster that consists of x86
and SPARC CPUs, and tested a simple but long-running
master-worker program with staged rebooting of multiple
nodes to simulate some serious fault situations. Despite that
the program as well as IDL was essentially unmodified from
the original Ninf version, and thus the new features of Ninf-
C was transparent from the programmer, program execution
finished normally avoiding all the fault scenarios where it
would have definitely failed for the original Ninf, demon-
strating the robustness of Ninf-C.

The rest of paper is composed as follows: Section 2 gives
an overview of the Condor system. In section 3 we describe
the design and implementation of Ninf-C. Section 4 demon-
strates a working example program and performs an evalu-
ation of the system using the program. Section ?? describes
related work, and we conclude in Section 6 will conclude
with future directions for further robustness and scalability
in the future versions of Ninf-C.

2. Overview of Condor

Condor is a job queuing system, developed by the Uni-
versity of Wisconsin, aiming to achieve high-throughput
computing utilizing unused computers within the campus.
Recently, it is also used as a meta-scheduler for Globus
managed resources. Condor manages numerous computer
resources and assigns them to submitted jobs form users.

Condor uses a flexible mechanism called ’Match
Making’[12] to allocate the servers for the jobs. Con-
dor also supports user program check-pointing and pre-
emption to enable flexible priority based job schedul-
ing.

2.1. Condor Architecture

Figure 1 shows the overview of the Condor System.
Computers participating in a Condor pool can have 3 roles,

2

Central
Manager
Central

Manager Cluster

Cluster

Condor Pool

Submit
Machine

Submit
Machine

Job

Job

Determine execute machine

Figure 1. Overview of Condor.

i.e. central manager, submission machine, and execution
machines. A computer can play multiple roles. A Condor
pool has to have one central manager and one or more
submission machines and one or more execution machine.
Users submit jobs from the submission machine, and the
central manager takes care of allocating an execution ma-
chine for each and every job.

Submission machines embody job queues, and send the
job information periodically to the central manager. An exe-
cution machine monitors its own resource information, such
as load average and amount of free memory area, and re-
port it to the central manager periodically. The central man-
ager takes these information and decides a suitable execu-
tion machine to be matched with a queued job.

2.2. Condor Universes

Condor supports multiple execution environments and
distinguishes them as ’universes’. The most common uni-
verses are standard and vanilla. The vanilla universe is the
most primitive universe. In this universe, advanced features
such as checkpointing and preemption will not work. In
the standard universe these feature can be used, but Con-
dor does not support this universe for several architectures.
There are some more universes, including ’globus’ uni-
verse, for Condor-G.

2.3. Checkpoint and Remote System Call

Condor provides checkpoint and remote system call fa-
cility, by replacing the standard C library with a custom
made library. In the Condor standard universe, the file I/O

system calls performed by executables linked with the cus-
tom library will be hooked and executed on the submit ma-
chine, not the execute machine. As a result, the executable
accesses the submit machine file system, not the execute
machine file system.

In addition, the executable will be automatically check-
pointed periodically. The checkpoint file will be stored on
the submit machine or a checkpoint server if specified. Con-
dor also supports process preemption and migration using
the checkpoint file.

2.4. Condor-G

Condor is able to invoke jobs on computers managed by
the GRAM gatekeeper, the resource management service of
the Globus toolkit. This function is called Condor-G and
the universe for Condor-G is called the ’globus universe’.
In the globus universe, some of Condor’s advanced capabil-
ities, such as check-pointing and remote system-call, do not
work, though basic capabilities, such as automatic server se-
lection and automatic restart, are supported. [15]

Condor also can invoke Condor execute machine dae-
mons on Globus managed servers, using Condor-G. This
type of invocation, called Condor-Glidein, enables user jobs
in the standard universe allowing check-pointing and re-
mote system call.

3. Design of the Ninf-C

3.1. Requirements for robustness

To enable effective and robust execution of long-running
master-worker programs, the followings are required:

1. The system can take checkpoint of the master program
and restart automatically from the checkpoint file after
the machine crash.

2. The system can take checkpoint of the worker pro-
grams and migrate them if needed.

3. The system can utilize computing resources that be-
come available during the execution.

Although the Condor almost fulfills these requirements
for standalone applications, except for the first item, it is not
sufficient for communicating processes, like RPC systems,
as mentioned below. We designed Ninf-C to fully utilize the
Condor functions and avoid disturbing or replicating them.

3.2. Communication with files

As described above, checkpointing is essential for long-
running applications. The problem is that, communicating

3

processes using sockets are difficult to checkpoint. Most
checkpoint libraries, includes the Condor’s one, does not
support socket communication.

In Ninf-C, the master and the workers communicates via
files, not sockets. The contents to be passed are written to
files once, and transferred to the target by separated pro-
gram (the Condor), and read into the target program. This
enables checkpointing of the master and the workers.

As a side-effect, all the communication will be ‘logged’
on the master file system. Using this communication log,
the master program is able to rebuild its internal state when
it is restarted from checkpoint file. The detail is described
in 3.6.

In addition, the file based communication extends the ap-
plicability of Ninf-C. For example, Condor-G can utilize
privately addressed clusters as backend resources. In this
case the executing machine and the submit machine cannot
communicate directly with sockets. The file base communi-
cation works well for this situation.

3.3. Overview of the Ninf-C

The Ninf-C RPC is implemented using file staging facil-
ity provided by Condor. The worker program has to be pre-
pared as a remote executable linked with the Ninf-C com-
munication library. The master program sits on the submit
machine, and execute the workers by submitting the remote
executable as Condor jobs.

Figure 2 shows the details of the Ninf-C RPC implemen-
tation. When the master program invokes a worker job as
a RPC call with some argument, the Ninf-C runtime library
automatically marshals and writes out the argument as a file,
and generates a submit file that specifies the worker remote
executable as the executable, and the argument file as the
stage-in file, a stage-out file to store the result of the RPC in-
vocation. Then, the library submits the submission file by is-
suing a command named condor_submit, which is pro-
vided by the Condor.

The library monitors a log file to determine where the
Condor system writes information about the submitted jobs,
and obtains a Condor job id for the submitted worker job.
The worker job will be ‘match-made’ with a computer re-
source in the Condor pool. The remote-executable will be
staged to the resource, along with the input argument file,
and invoked there. The remote-executable re-generates in-
put arguments by reading and un-marshaling of the input
argument file, and gives them to the worker function as
arguments. When the worker function completes, the exe-
cutable marshals the result of the function and writes out
as the stage-out file, and finishes (terminates). The Condor
system automatically detects its termination, stage-back the
output file to the submit machine, and logs it to the log file.

Submit file

Remote
execututable

Remote
execututable

Condor

Submit

Ninf-C
Master Program

NinfCall(
“funcname”,

input_data,

output_data);

Monitor

executable

Input
Data file

Output
Data file

Log
File

Execute Machine

Input
Data file

Remote
Executable

Remote
Executable

Output
Data file

log

Stage in

Stage in

Stage out

input output

log

worker

Figure 2. Overview of Ninf-C.

The master runtime library waits for the worker to finish
monitoring the log file. When it finds that the worker is fin-
ished, it reads in and un-marshals the output file and stores
the result of the worker job into a variable specified as the
RPC arguments.

3.4. Programming API of Ninf-C

The programmer interface functions of Ninf-C are al-
most same as the those of our preceding projects: Ninf and
Ninf-G, but slightly differ in terms of naming convention.
Table 1 shows the important functions of Ninf-C API.

The primary interfaces are NinfCall and NinfCallAsync.
These functions invoke remote function specified by the
first argument. The former function blocks till the remote
function finishes and returns the result. The latter func-
tion returns immediately without waiting for the result, and
stores the session ID in the second argument. The session
ID is used to identify each function invocation.

To wait for a session to be done, use NinfWait with the
session ID specifying the session. We also provide several
functions that wait for a set of sessions, such as NinfWait-
And and NinfWaitOr.

3.5. Ninf IDL and its compiler

To use Ninf-C, programmers have to declare a worker
function interface using an IDL (Interface Description Lan-
guage) called Ninf IDL. Here, we omit description of
the IDL specification here, since it is completely same as
Ninf[10]. Figure 3 shows an example of interface descrip-
tion using the Ninf IDL.

4

Type Description

NinfErrorCode Error code
NinfSessionId Session Identifier

Function Description

int NinfParseArg(int argc, char ** argv); Initializes the Ninf-C compornent.
NinfErrorCode NinfFinalize(); Finalizes the Ninf-C compornent

NinfErrorCode NinfCall(char * entry, ...);
Invokes a remote function specified by en-
try, in a blocking manner.

NinfErrorCode
NinfCallAsync (char * entry,

NinfSessionId * pSessionId, ...);

Invokes a remote function specified by en-
try, in a non-blocking manner. Returns the
id of the session in * pSessionId.

NinfErrorCode NinfWait(NinfSessionId id);
Waits for the finish of the session specified
by id.

NinfErrorCode NinfWaitAll();
Waits for all the sessions invoked in ad-
vance, to finish.

NinfErrorCode NinfWaitAny(NinfSessionId * id);
Waits for any sessions invoked in advance,
to finish, and stores it to *id.

NinfErrorCode
NinfWaitAnd(NinfSessionId * idList, int length);

Waits for all sessions in the idList done.
The length of the list is specified as length.

NinfErrorCode
NinfWaitOr(NinfSessionId * idList, int length,

NinfSessionId * id);

Waits for any one of the sessions in the
idList done. The length of the list is speci-
fied as length. Stores the done session into
*id.

NinfErrorCode
NinfGetState(NinfSessionId id,

NinfSessionStatus * status);

Gets status of the specified session and
store it to status.

NinfErrorCode NinfCancel(NinfSessionId id);
Cancels the execution of the specified ses-
sion.

Table 1. The Ninf-C API functions.

Module pi;

Define pi_trial(
IN int seed,
IN int n,
OUT double * ratio

)
"tries n random points"
Required "pi_trial.o"
{
extern double

pi_trial(int seed, int n);
* ratio = pi_trial(seed, n);

}

Figure 3. An example of inteface description.

Ninf-C provides an IDL compiler, called ncgen to
process the IDL description. It reads the IDL description
and generates interface information files, which contains
binary encoded interface information of a function, stub
main source code file, which provides wrapper code for the
worker function, and a make file to help compilation and

IDL FileIDL File

make filemake file

Stub
main file

Stub
main file

make

Interface
information

Interface
information

IDL Compiler

Remote
Executable

Remote
Executable

Ninf-C
Communication

Library

Ninf-C
Communication

Library

Computation
Library
“.o” file

Figure 4. The IDL compiler.

linkage of the remote executable. Figure 4 shows the dia-
gram of IDL file processing.

5

Check point

Execution
Node Crush

Restart from
Check point
file

Job submit

Job submit

The Same job will be
Submitted twice

Figure 5. Checkpointing of the Master pro-
gram.

3.6. Checkpointing of the master program

Condor provides checkpoint capability for remotely-
executed program, that is the workers are automatically
checkpointed, and may be migrated if needed. To make the
whole system robust, not only the workers but also the mas-
ter has to be checkpointed. Condor does provide the sched-
uler universe, that executes an executable on the submit
machine under control of the Condor. The universe guar-
antees re-execution after the submit machine crash, but it
does not provide checkpoint.

In addition, for the master process, simple checkpointing
is not enough. Suppose a master process is checkpointed,
and then submits a job, and the submit machine crashes. If
we restart the master process from the checkpoint file, it will
submit the same job once again(Figure 5). This will not af-
fect the result of the computation, but consumes computa-
tional resource needlessly.

To solve this problem, Ninf-C implements two mech-
anisms: periodical checkpointing with the Condor check-
point library and filename based double submit avoidance.

For the periodical checkpoint, master program is linked
with the Condor checkpoint library and submitted to the
scheduler universe, wrapped in a script. The script invokes
the master program and periodically sends a signal that
causes checkpoint. When the submit machine recovers from
a crash, the script will be re-invoked by the Condor system.
The script checks the existence of a checkpoint file, and if
it exists, restarts the master program for the checkpoint file.

To implement this mechanism, we provide a command to
submit master programs, called ncrun. The command takes
the master program name and arguments for the program,
and generates the wrapper script for the master program and
submit file for the script, and submit it to the Condor sched-
uler universe.

Double submission avoidance mechanism is imple-
mented as follows. The master program manages a se-

Executable = exec.$$(OpSys).$$(Arch)

Requirements = \
((Arch=="INTEL" && OpSys=="LINUX") || \
(Arch=="SUN4c" && OpSys=="SOLARIS29"))

Figure 6. A submit file to utilize several archi-
tectures.

quential unique numbers for each RPC call and names
the submission file according to the unique number.
When the master invokes a new RPC, it tries to cre-
ate a new submission file for the RPC. Before it actu-
ally creates the submission file, it checks the existence of
the same named file. If it exists, this means that the sub-
mission is already done by a previous incarnation of the
master program, before the crash. In this case, the mas-
ter program stops the submission and just waits for the
result.

3.7. Utilize heterogeneous PC clusters

Ninf-C encodes files used for communication between
the master and the workers, using Sun’s XDR. This implies
that the machine architecture for the master and the work-
ers can be different.

Condor provides a mechanism to submit a job on
a Condor-pool that consists of heterogeneous comput-
ers. Figure 6 shows the fragment of a submit file to sub-
mit a job on a pool with x86 Linux machines and SPARC
Solaris machines. The condor system automatically se-
lects the most suitable machines for the job and submits
the job with appropriate executable. In this case, the exe-
cutables have to be named as exec.LINUX.INTEL and
exec.SOLARIS29.SUN4c.

Ninf-C can utilize heterogeneous Condor pool us-
ing this mechanism. The makefile generated by
the Ninf-C IDL compiler generates a remote exe-
cutable with a name that includes compiling sys-
tem architecture and operating system, taken with the
condor_status command. The remote executable
is named as _stub_(ModuleName)_(EntryName). (OS-

Name).(ArchitectureName).
When an invocation occurs, the master program au-

tomatically scans its current working directory and
gathers executable files that have names start with
stub(ModuleName)_(EntryName), and gathers possi-
ble executable architectures and operating systems from
the filenames. Then it generates a submit file with a Re-

quirements field for the architectures and operating sys-
tems.

6

3.8. Throttling

The master program submits one job, to the Condor, for
each RPC invocation. The Condor system copies and stores
the executable files to be submitted, for each job submis-
sion. This means that, if the master program invokes thou-
sands of RPC calls, (a typical usage we are assuming), thou-
sands of Condor jobs will be submitted, and thousands of
copies of the executable file will be stored on the submit
machine and this stressing the storage capacity. This is a
undesirable because the executable linked with the Condor
checkpoint library is always statically linked and, as a re-
sult, tends to be large.

To avoid this situation, Ninf-C has a throttling feature. In
the configuration file, users can specify the maximum num-
ber of jobs that can be submitted simultaneously. During the
execution, when the master wants to submit more than the
specified value, it will block and wait for some of the sub-
mitted jobs to be done, and then resumes.

3.9. Steps to execute a Master-worker Program

Steps to execute a master-worker program using Ninf-C
are as follows:

1. Write a master program using the API functions, com-
pile and link with the Ninf-C communication library
and the Condor checkpoint library. Ninf-C provides a
compile driver called nccc to ease this step.

2. Generate a remote executable for the workers. Firstly,
define the interface of the worker function with Ninf-
IDL, and compile it with the IDL compiler called
ncgen. The compiler will generate a makefile, inter-
face files and stub main source code. Then, compile
and link the stub main code by executing make com-
mand with the generated makefile.

3. Write a configuration file for the master, which spec-
ifies interface information file path and the maximum
number of submitting jobs for throttling.

4. Launch the master program with the ncrun com-
mand, with arguments that specifies the configuration
file. The ncrun will create a temporary sub directory
and generate a wrapping script file and a submit file for
the master program in it, and submit the submit file into
the Condor pool. The condor system invokes the wrap-
ping script, and the wrapping script invokes the mas-
ter program. The master program submits jobs for the
workers.

OS CPU #PE #Nodes

LINUX Pentium III 1.4GHz 2 5
Solaris 2.9 SPARC 450MHz 1 2
Solaris 2.9 SPARC 450MHz 2 2
Solaris 2.9 SPARC 450MHz 4 3

Table 2. The Condor pool used for the Exper-
iment.

4. Evaluation

For evaluation, we conducted two expereiments; one is
to confirm the robustness of the system, and another is to
confirm its scalability.

4.1. Robustness test

To confirm robustness, we conducted an experiment on a
Condor pool with heterogeneous resources. We executed a
long-running master-worker application on the pool and in-
jected artifitial faults by rebooting some of the machines in
the pool, including the submit machine and the central man-
ager.

Table 2 shows the Condor pool, which consists of X86
LINUX PCs and SPARC Solaris workstations. The central
manager is running on one of the LINUX PCs and we used
a SPARC machine with 2PEs as the submission machine.

Note that these computers are not dedicated for the
experiment. These computers are publicly shared via the
Globus GRAM, and users outside actually submitted jobs
on the computers.

4.1.1. Sample Program We used a master-worker pro-
gram that calculates PI using the Monte-Carlo method. This
program randomly generates a large number of points in a
square and counts the number of points that are located in-
side the inscribed circle of the square. PI can be derived
from the ratio of the number of the interim points versus the
number of all the points.

Figure 7 shows the core portion of the master program.
Note that error-handling code is intentionaly omitted here
for brevity The program calls worker � times in a non-
blocking fashion, using NinfCallAsync, and waits for
all jobs to finish by calling NinfWaitAll.

In the experiment setting we performed, the worker gen-
erates and tests �� ��

�� points per one job, and the master
submits 200 jobs for the worker. In total ����

�� points was
generated and tested. To finish the job, a worker takes ap-
proximately 50 min on a LINUX PC, and approximately 3
hours on a Solaris WS in the pool.

7

double ratios[n];
int ids[n];

/* invoke rpc one by one */
for (int i = 0; i < n; i++){
NinfCallAsync("pi/pi_trial",

&(ids[i]),
i, m,
&(ratios[i]));

}

/* wait for all the rpc done */
NinfWaitAll();

/* sum up */
double ratioSum = 0.0;
for (int i = 0; i < n; i++);
ratioSum += ratios[i];

/* print the result */
printf("pi = %f\n",

(ratioSum / n) * 4.0);

Figure 7. A fragment of the Master Program.

4.1.2. Artificial Faults During the execution of the pro-
gram shown above, we injected artifitial faults and observed
the behavior of the system.

1. 210 min. later, rebooted one of the 4PE Solaris.

2. 350 min. later, rebooted one of the 4PE Solaris.

3. 540 min. later, killed Condor processes on the central
manager

4. 600 min. later, rebooted one of the 4PE Solaris.

5. 660 min. later, rebooted the submission machine.

6. 740 min. later, killed Condor processes on a Linux
node

4.1.3. Experiment Result The application success-
fully finished its execution. Figure 8 shows the number of
the running jobs during the execution. The X-axis shows
the elapsed time in minutes. The Y-axis shows the num-
ber of running jobs. We can say that, the number of run-
ning jobs drastically decreases after the injected faults, and
then rapidly recovers. Note that, rebooting the submit ma-
chine caused a major damage on the system, but it was
successfully overcome by the method proposed in this pa-
per.

0

5

10

15

20

25

30

Elapsed Time (min)

N
u
m

b
e
r

o
f
R
u
n
n
in

g
 J

o
b
s

100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

30

Elapsed Time (min)

N
u
m

b
e
r

o
f
R
u
n
n
in

g
 J

o
b
s

100 200 300 400 500 600 700 800 900 1000

Reboot a 4PE
Solaris node

Reboot a 4PE
Solaris node

Stop Condor processes
On the Central Manager

Reboot a 4PE
Solaris node

Reboot the
Submit Machine

Stop Condor processes
On a 2PE Linux node

Figure 8. No. of working Job.

4.2. Scalability test

To confirm the scalability of the system, we conducted
an experiment using a large-scaled Condor pool and a long
runnning job.

4.2.1. Experimental platform As the platform for the ex-
periment, we employed a large-scaled Condor pool de-
ployed at Titech Grid, a production large cluster of clusters
installed across campuses of the Tokyo Institute of Tech-
nology. The Titech Grid consists of 12 small to medium
sized clusters with dual Pentium III 1.4 GHz, and has more
than 800 processors in total. The condor pool on the Titech
Grid has 734 processors at the time the experiment was con-
ducted. To avoid invasion for jobs from other users, we re-
stricted the maximum number of processors to 200.

4.2.2. Experimental setting As an application program,
we employed a Molecular Dynamics simulation program;
Sander from Amber6. Originally the Sander obtains config-
uration information from a file. We changed it slightly so
that it takes configuration information from function argu-
ments. Using Ninf-C, users can control configuration from
master programs.

We conduted a thousand molecular dynamics simula-
tions on a molecule with different initial velocity for each
atom. The initial velocity is automatically generated ran-
domly in the Sander, using a seed specified by the master
program. As the target molecule, we employed small pro-
tein called Trp-Cage, that have 20 residue. The simulation
time is 360 micro seconds. As a potential parameter, we em-
ployed parm99[16].

8

0

50

100

150

200

Elapsed Time(hour)

N
o
.
o
f

A
c
t
iv

e
 J

o
b
s

5 10 15 20 25 30 35 40 45

Figure 9. No. of working Job for MD simula-
tion.

Each simulation takes around 7 hours on a Pentium III
1.4GHz node. Please note that the execution environment is
shared by several users who may throw in jobs without us-
ing Condor.

4.2.3. Evaluation Result Figure 9 shows the number of
working Condor jobs during the execution. We can observe
that, we could almost always utilize the 200 processors; the
upper limit of the setting. The total execution takes 2 days
long, showing the stable operation of Ninf-C.

5. Related Work

5.1. Condor DAGMan

The Condor DAGMan (Directed Acyclic Graph
manager)[2] is a job-flow scheduler that uses Con-
dor as the job execution system. It takes a job-flow file,
called the DAG file, which describes dependency graph
among jobs, i.e. Condor submit files.

DAGMan itself runs as a scheduler universe job on the
submit machine, as is with the Ninf-C master program. It
reads a DAG file and determines jobs to be submitted next,
and submits it, and monitors the job status using the log file.
DAGMan does not have any state except for job-execution
status, and job-execution status can be easily re-constructed
from the log file. It means that it does not need check-
pointing for robustness.

DAGMan and Ninf-C have some commonality in the ba-
sic architecture, in that they run as Condor scheduler uni-
verse jobs, monitor jobs with the log file, and control jobs
with commands Condor supplied. The difference is that,
DAGMan cannot handle dynamically changing workflows.
Ninf-C gives programmers freedom to dynamically change

the behavior of the programs depending on the preceding
calculation result, etc.

Another difference is that, DAGMan requires deep
knowledge of Condor, since the programmers have to
writes their Condor submit files and setup input files.
Ninf-C eases the burden by automatically generating these
files.

5.2. Condor MW

MW(Master Worker)[8] is a generic framework for
master-worker style applications, based on the Con-
dor system. It provides C++ base classes for the driver
(master), the worker and the task. Programmers have to ex-
tend these classes and fill up the specified methods for
each class. The driver process runs on a submit ma-
chine as a scheduler universe job. MW supports three
communication methods: PVM, sockets, and files. The
file-communication is implemented using remote sys-
tem call capability and provides robustness for the sys-
tem.

The data transfer API that MW provides is similar to
PVM. The programmer has to explicitly marshal and un-
marshal the data to be transfered. In Ninf-C, a programmer
does not take care of these issues.

Both MW and Ninf-C target master-worker style-
applications, though the target worker grain size is dif-
ferent. MW maps multiple worker tasks on a single
Condor job, to minimize communication cost, focus-
ing on fine-grained master communication. On the other
hand, Ninf-C maps one worker task on one Condor job, tar-
geting coarse grained applications.

5.3. Ninf-G

Ninf-G[14] is a GridRPC system, implemented on top of
the Globus Toolkit.[6] It provides easy to use RPC interface
for users, just like the Ninf-C. It supports GridRPC API[13]
that is under standardization effort in the GridRPC WG of
the Global Grid Forum.

Since Ninf-G aims to execute relatively fine-grained
master-worker type applications on large-scale Grids, the
focus is on reducing each RPC invocation cost and opti-
mize the API and implementation for that purpose. On the
other hand, fault tolerance is not regarded as first priority.
Ninf-G can provide primitive fault-tolerance for the work-
ers using re-invocation by the upper-layer middleware, al-
though it cannot do anything for master program.

Ninf-G directly accesses resources on Grids managed by
the Globus Toolkit, while Ninf-C itself does not have any
facility to directly access Grid, though it can indirectly ac-
cess via Condor-G.

9

6. Conclusion

We described the design and implementation of a fault
tolerant RPC system, Ninf-C, which is designed for large-
scale master-worker programs. It is implemented on Con-
dor and provides users with a robust RPC framework for
long-running applications. To prove robustness of Ninf-C,
we performed an experiment on a cluster. We ran a long-
running master-worker program on the cluster and rebooted
several machines of the cluster to simulate some serious
fault situations. Despite this, the program execution still fin-
ished normally, proving the robustness of Ninf-C. We also
tested a realistic program that ran stablely for two days on a
Titech Grid.

For the future work, we will address following issue:

� Evaluation using more real-world applications
The programs we used here have the simplest

master-worker structure. To evaluate the system prop-
erly, we have to employ more large real-world appli-
cations. We are now planning to employ molecular
dynamic method with replica-exchange.

� Evaluation on Grids with Condor-G
As mentioned in 5.3, Ninf-C can utilize Grid re-

sources managed by Globus GRAM, via Condor-G.
We will perform experiments using large-scale appli-
cations on wide-area testbeds such as ApGrid[4], a
Grid testbed in the Asia Pasific region, to confirm the
scalability and the affinity with the Grid of Ninf-C.

Acknowledgement

We thank Jaime Frey from Condor Team, University
Wisconsin, for his experties and many advices. We also
thank Motonori Ohta, GSIC, Tokyo Institute of Technology,
who helped us to use Amber for evaluation.

References

[1] Condor. http://www.cs.wisc.edu/condor/.

[2] Dagman. http://www.cs.wisc.edu/condor/dagman/.

[3] K. Aida, W. Natsume, and Y. Futakata. Distributed com-
puting with hierarchical master-worker paradigm for parallel
branch and bound algorithm. In Proc. 3rd IEEE/ACM In-
ternational Symposium on Cluster Computing and the Grid
(CCGrid 2003), 2003.

[4] ApGrid. http://www.apgrid.org/.

[5] R. Buyya, D. Abramson, and J. Giddy. Nimrod/g: An archi-
tecture for a resource management and scheduling system in
a global computational grid. In Proceedings of HPC Asia
2000, 2000.

[6] I. Foster and C. Kesselman. Globus: A metacomputing in-
frastructure toolkit. In Proc. of Workshop on Environments
and Tools, SIAM., 1996.

[7] K. Fujisawa, A. Takeda, M. Kojima, and K. Nakata. The
sdpa (semidefinite programming algorithm) on the ninf (a
network based information library for the global comput-
ing) (in japanese). In The Institute of Statistical Mathematics
Cooporative Research Report, volume 135, pages 215–222,
2000.

[8] J.-P. Goux, S. Kulkarni, J. Linderoth, and M. Yorde. An
enabling framework for master-worker applications on the
computational grid. In Proceedings of the Ninth IEEE
Symposium on High Performance Distributed Computing
(HPDC9), pages 43 – 50, Pittsuburgh, Pennsylvania, August
2000.

[9] M. Livny, J. Basney, R. Raman, and T. Tannenbaum. Mech-
anisms for high throughput computing. SPEEDUP Journal,
11(1), June 1997.

[10] H. Nakada, M. Sato, and S. Sekiguchi. Design and imple-
mentations of ninf: towards a global computing infrastruc-
ture. In Future Generation Computing Systems, Metacom-
puting Issue, volume 15, pages 649–658, 1999.

[11] H. Nakada, Y. Tanaka, S. Matsuoka, and S. Sekiguchi. Grid
Computing: Making the Global Infrastructure a Reality,
chapter Ninf-G: a GridRPC system on the Globus toolkit,
pages 625–638. John Wiley & Sons Ltd, March 2003.

[12] R. Raman, M. Livny, and M. Solomon. Matchmaking: Dis-
tributed resource management for high throughput comput-
ing. In Proc. of HPDC-7, 1998.

[13] K. Seymour, H. Nakada, S. Matsuoka, J. Dongarra, C. Lee,
and H. Casanova. Gridrpc: A remote procedure call api for
grid computing. submitted to Grid2002.

[14] Y. Tanaka, H. Nakada, S. Sekiguchi, T. Suzumura, and
S. Matsuoka. Ninf-g: A reference implementation of rpc-
based programming middleware for grid computing. Jour-
nal of Grid Computing, 1(1):41–51, 2003.

[15] D. Thain, T. Tannenbaum, and M. Livny. Condor and the
grid. In F. Berman, G. Fox, and T. Hey, editors, Grid Com-
puting: Making the Global Infrastructure a Reality. John Wi-
ley & Sons Inc., December 2002.

[16] J. Wang, P. Cieplak, and P. A. Kollman. How well does
a restrained electrostatic potential (resp) model perform
in calculating conformational energies of organic and bio-
logical molecules? Journal of Computational Chemistry,
21(12):1049–1074, 1999.

10

