April 6, 2007 15:12 Proceedings Trim Size: 9in x 6in gcal7

AN ADVANCE RESERVATION-BASED COMPUTATION
RESOURCE MANAGER FOR GLOBAL SCHEDULING

HIDEMOTO NAKADA, ATSUKO TAKEFUSA, KATSUHIKO OOKUBO,
TOMOHIRO KUDOH, YOSHIO TANAKA, AND SATOSHI SEKIGUCHI
National Institute of Advanced Industrial Science and Technology (AIST) Grid
Technology Research Center 1-18-18 Sotokanda, Chiyoda-ku, Tokyo, 1010021,
Japan,

{hide-nakada, atsuko.takefusa, ookubo-k, t.kudoh, yoshio.tanaka,
s.sekiguchi} @Qaist.go.jp

Advance Reservation is one possible way to enable resource co-allocation on the
Grid. This method requires all the resources to have advance reservation capa-
bility as well as coordination protocol support. We employed two-phase commit
protocol as a coordination protocol, which is common in the distributed transac-
tion area, and implemented an Advance Reservation Manager called PluS. PluS
works with existing local queuing managers, such as TORQUE or Grid Engine,
and provides users advance reservation capability. To provide the capability, there
are two implementation methods; 1) completely replaces the scheduling module of
the queuing manger, 2) represents reservation as a queue and controls the queues
using external interface. We designed and implemented a reservation manager with
both way, and evaluated them. We found that the former has smaller overhead
and allows arbitrary scheduling policy, while the latter is much easier to implement
with acceptable response time.

1. Introduction

One of the main goals of the Grids research is to co-allocate several resources
that span widely on the network, and perform huge computation on it.
Advance reservation is one possible way to enable resource co-allocation
on the Grid. All the resources have its own local scheduler with advance
reservation capability and the super scheduler co-allocates all the resources
by making reservation on all the resources on a specified timeslot.

One important thing here is the protocol between super scheduler and
the local resource manager. Co-allocation of several resources is essentially
a kind of distributed transaction. To guarantee acceptable behaviors on
the operation failure, super scheduler and local resource managers have to
employ a proper protocol between them.

April 6, 2007 15:12 Proceedings Trim Size: 9in x 6in gcal7

Therefore, we need to have the following three things to make advance
reservation based co-allocation happen: 1) A super scheduler that supports
advance reservation, 2) Local schedulers that provide advance reservation,
3) Proper bridge protocols to harness 1) and 2)

We already proposed a scheduler that can co-allocate network and com-
putation resources 6 as 1), and WSRF (Web Services Resource Framework)
based advance reservation protocol ® as 3). In this paper, we describe de-
sign and implementation of an advance reservation manager called PluS as
2). PluS supports the two-phase commit protocol, which is commonly used
distributed transaction area, as a co-allocation protocol. PluS works with
widely used existing local schedulers, namely, TORQUE * and Grid Engine
2 and provides them with advance reservation capability.

There are two methods to ‘add’ advance reservation capability to exist-
ing local queuing systems; 1) completely replace scheduling module in the
local queuing system with the one does support the advance reservation,
2) keep the scheduling module as is and add another module that control
queues to make advance reservation happen. We designed and implemented
our advance reservation manager PluS in both methods and evaluated them.

The result showed that the former has smaller overhead and flexibility
to allow implementers for setting up reservation policy, while it requires
full re-implementation of the scheduling module putting a huge burden on
the implementers. The latter is easy to implement but restricted in setting
policies and have acceptable but larger overhead.

2. Coallocation and two-phase commit protocol

Here, we demonstrate the needs for commit protocol for co-allocation, show-
ing an example. Assume that we have two resources (A and B) and already
made reservation for specific timeslot on both of them, and want to move
the timeslot, say, 1 hour later. In the naive implementation, it will is-
sue modification requests to resource A and B, sequentially. However, this
implementation is potentially problematic. Assume that the modification
succeeded in resource A and failed in resource B. The expected behavior
will be to give up the modification and revert to the original situation, keep-
ing the original reservation time slot. Note that this is not always possible,
since the reservation timeslot for resource A is already modified and there
is no guarantee that the previous timeslot is still available for reservation.
In the worst case, the reservation modification results in failure and the
timeslot previously reserved is lost.

April 6, 2007 15:12 Proceedings Trim Size: 9in x 6in gcal7

Hqsub/qdel

@ Head Node
Master Scheduling
Module Module
A

N N

Node Mng. Node Mng. Node Mng.
Module Module Module

Comp. Node| |Comp. Node| |Comp. Node

Figure 1. Generic Configuration of Queuing Systems.

Co-allocation of several resources boils down to distributed transaction.
The distributed transaction has been investigated for long time 7, and sev-
eral protocols are proposed to cope with it. The most basic protocol among
them is the two-phase commit protocol. The point of the protocol is to
postpone the commitment of the operation until the second turn of the
communication. When the super scheduler is about to perform some op-
eration, it issues commit-requests to all the concerned local schedulers. If
all the local schedulers replied ready-to-commit, the super scheduler per-
forms commit operation. With this protocol, the situation shown above
can be avoided. There are several queuing systems that support advance
reservation, but none of them does support two-phase commit protocol.

3. Design of PluS
3.1. Generic design of Batch Queuing Systems

In general, a batch queuing system consists of a head node and several
compute nodes. The head node is the submission node through which users
submit their jobs. Compute nodes are the worker nodes that actually ex-
ecute jobs on requests from the head node. Note that these functions are
not exclusive. It is possible for one physical node works as both of them.

The head node functionality is realized by two separate modules, typi-
cally; master module and scheduling module. The compute nodes function-
ality is implemented by node management module (figure 1).

Master module is the central module of the whole queuing system.
The roll of the module can be categorized into three as follows: 1) man-
agement of job queue, 2) remote management of compute nodes, 3) initiate
scheduling cycle and execution of the scheduling assignment. The master
module receives job management requests, such as submission, cancellation,
monitoring of jobs, from users. At also communicates with node manage-
ment modules on compute nodes and keep track of the status of each node.

April 6, 2007 15:12 Proceedings Trim Size: 9in x 6in gcal7

It periodically (or on some events) initiates scheduling for the scheduling
module and performs the assignments decided by the scheduling module,
by giving orders to the node management modules. This module is called
‘pbs_server’ in TORQUE and ’sge_qmaster’ in Grid Engine, respectively.

Scheduling Module is responsible for the scheduling; i.e., allocation
and assignment of compute nodes to jobs. It obtains information on com-
pute nodes and jobs and base on the information, determine the alloca-
tion and assignment. This module is called "pbs_sched’ in TORQUE and
‘sge_schedd’ in Grid Engine, respectively.

Node Management Module is the module that is responsible for sev-
eral aspects of managing computation node, such as periodic monitoring of
the load average, available memory amount, and available storage amount,
and reporting them to the master module, as well as invocation, termina-
tion, monitoring of jobs. This module is called 'pbs_.mom’ in TORQUE,
and ’sge_execd’ in Grid Engine, respectively.

3.2. Job Queue

Job queue is a basic concept in the queuing systems. Job queue manages
jobs submitted by users in (basically) FIFO (First In First Out) fashion,
and schedule them one by one. Most queuing systems are capable of man-
aging several queues. Each queue can be assigned dedicated computational
nodes, enabling to manage single cluster as separated independent comput-
ing facility. Most queuing systems can be set up so that allow specific user
group to submit jobs into specific queues.

3.3. Implementation methods for Advance Reservation

To add the advance reservation capability to the queuing systems shown
above, there are following strategies: 1) Completely replace the existing
scheduling module with specially crafted module with advance reservation,
2) Control job queues and mappings with nodes and users from external
module.

Scheduling Module Replace Method:

In this method, scheduling module in the queuing system will be com-
pletely replaced by the newly implemented module. The module receives
reservation requests from users and returns reservation IDs for each re-
quest. The users submit jobs with the reservation IDs. The master module
asks the scheduling decision for the replaced scheduling module, passing
job information including the reservation IDs. The scheduling module will

April 6, 2007 15:12 Proceedings Trim Size: 9in x 6in gcal7

Hqsub/qdel Reservation H Hqsub/qdel H Reservation requests

requests
Head Node

Head Node
r’l Reservation Mng I
Module
Master Sﬂzzn'ltg Master Scheduling
Module w/ AR Module Module
A A

N NS N N
Node Mng. Node Mng. Node Mng. Node Mng. Node Mng. Node Mng.
Module Module Module Module Module Module
Comp. Node| |Comp. Node| |Comp. Node Comp. Node| |Comp. Node| |Comp. Node
Figure 2. Replacing Scheduling Mod- Figure 3. External Queue Control
ule Method. Method.

allocate node for the reserved jobs only when the timeslots are reserved for
the jobs (figure 2).

This method has advantage over the other in the aspect of the policy
setting latitude. This method will completely replace the ’heart’ of the
scheduling system, giving implementers freedom to setting arbitrary policy.

On the other hand, this method has several disadvantages especially in
its implementation. Firstly, the implementers have to know the commu-
nication protocol between master module and scheduling module. Adding
to it, there is no guarantee that the protocol will stay the same when the
queuing system upgraded. It means that the implementers have to keep
fixing the module to keep up the upgrade.

Secondly, the method requires re-implementation of the existing

scheduling module functionality. Assume that we want to modify a working
queuing system so that it will accept advance reservation requests. We have
to re-implement all the functionality used on the site at least to guarantee
the behavior of the system unchanged except for the reservations. This
requires a lot of works in general.
External Queue Control Method: In this method, advance reservation
capability will be implemented in the independent reservation management
module, and the reserved timeslots will be represented as queues. The
reservation management module will respond to the requests from users
(figure 3).

The reservation management module dynamically creates queues on
reservation requests from the users, and returns the name of the queue.
It utilizes command line interface provided by the queuing system for cre-
ating queues. The queues will be created in inactive status; the queue can
store jobs user submitted, but does not actually run them. It will be setup

April 6, 2007 15:12 Proceedings Trim Size: 9in x 6in gcal7

so that only the specific users can submit to it. When the reserved time
arrives, the reservation management module activate the queue so that the
jobs in the queue can run, as well as control the other queues so that they
do not use the nodes allocated to the reservation queue.

The largest advantage of the method is that, it can easily guarantee
that the behavior of the queuing system to stay the same except for the
reservation. The reservation management module is completely external
and do nothing without reservation request. The implementation itself is
also easier. The disadvantage is that it requires queuing system to support
several queue related functionalities; the queuing system have to tie a queue
to specific compute node set and user set. It is not so demanding but there
are several queuing systems that do not support this, including TORQUE.

The other potential disadvantage is the extra cost to control the queue
using command line interface. This method requires several times queue
control command invocation when processing reservation requests as well
as when it makes the reservations happen.

4. Implementation of PluS
4.1. Overview of the PluS Reservation Manager

We implemented PluS based on two methods shown in previous section.
PluS works with TORQUE and Grid Engine and it is implemented thor-
oughly in Java for portability and high productivity, except for few com-
munication modules written in C for compatibility. We implemented a
version for TORQUE in the scheduling module replace method and two
versions for Grid Engine with both of the methods. Note that both of the
two implementations with the scheduling module replace method are some-
what ‘subset’; we implemented only the essential portions of the scheduling
module and a few functionalities are left unimplemented. We could not
implement a version for TORQUE with the queue control method, since
TORQUE lacks required capability to implement the method.

PluS provides command line interface to operate with PluS. Table 1
shows a list of the command. Note that some of them have -T flag that
denote ‘two phase operation’. With this option the operation made by the
command will not complete immediately. Instead, the operation will remain
in the ‘wait for commit’ status. Successive plus_commit (or plus_abort)
will commit (or abort) the operation. Each command is written in small
shell script that wraps around a Java written client program. The program
communicates with the PluS reservation management module with RMI.

April 6, 2007 15:12 Proceedings Trim Size: 9in x 6in gcal7

Table 1. Commands for Reservation Management

name | function | inputs | outputs

plus_reserve Request Reservation Requirements RSV_ID

plus_cancel Cancel Reservation RSV_ID

plus_modify Modify Reservation RSV_ID, Requirements

plus_status Show Reservations RSV_ID Reservation
Status

plus_.commit | Commit Reservation Opera- | RSV_ID
tions
plus_abort Abort Reservation Operations | RSV_ID

The PluS reservation management module maintains the reservation
table in it. The table has to be persistent to guarantee the table to survive
the head node reboot or crush. We employed Java native object database
dbjobjects . Tts interface was quite simple and easy to use and contributed
to make our implementation time shorter.

4.2. Advance Reservation Policy in PluS

Current implementation of PluS prioritize the advance reservation over the
ordinary queued jobs. The reservation is only restricted by the existence of
the other reservations and is not affected by existence of the queued jobs.

Le., jobs with advance reservation always have higher priority than the
non-reserved jobs and kick out them when needed. For example, assume
that a user wants to reserve a node, from 10 min. later for 1 hour. Even
though all the compute nodes are occupied by non-reserved jobs and there
will not be vacant nodes 10 min. later, the reservation request will succeed.
10 min. later, the PluS reservation management module kicks out a running
job from a compute node so that the reserved job can use the node.

This policy is effective when the site prioritizes coordination with other
resources and treats the local jobs as the backfill jobs.

4.3. PluS for TORQUE

TORQUE is a descendant of the OpenPBS which is an open source queuing
system has been not maintained for years. Since the queues in TORQUE
is not adequate for the queue control method implementation as mentioned
above, we implemented the scheduling module replacement method for
TORQUE.

In TORQUE the protocol used between the master module (pbs_server)
and scheduling module (pbs_sched) is relatively simple, text-based protocol.

April 6, 2007 15:12 Proceedings Trim Size: 9in x 6in gcal7

we reverse-engineered the protocol and developed a scheduling module that
can communicate with this protocol.

4.4. PluS for Grid Engine

Grid Engine is a queuing scheduler developed by Sun Microsystems, which
is widely used for many projects in the world. We implemented PluS with
both of the two methods. The scheduling module replacement method for
Grid Engine is done in just the same way with TORQUE, except for the
fact that the protocol used there is a binary and we have to implement a
module to translate plain XML notation. Implementation with the queue
control method works as shown in figure 4.

5. Evaluation

In this section we show comparisons between the scheduling module re-
placement method and the queue control method. We evaluate ease of
implementation based on number of lines of code and command execution
speed for reserve/cancel operation.

5.1. Fwvaluation based on lines of codes

Here, we show the lines of codes required for each implementations. Cur-
rently, we have three PluS implementations; for TORQUE, for SGE with
replacement method, and for SGE with queue control method. We counted
the number of lines of codes for each implementation. While the number
of lines might not accurately reflect easiness of implementation, especially
the implementation languages span from C to Java and sh, it still makes
fair index for easiness. The three implementations share some portions of
codes, such as for reservation and allocation management, command line
interface, as well as dedicated codes specific for each implementation. Fig-
ure 5 shows the number of lines for each implementation. The shared 8000
lines are shown as the underlying portion.

The dedicated portion is about 3000 lines for TORQUE, about 5200
lines for scheduling module replacement version for Grid Engine, and about
1800 lines for queue control version for Grid Engine. We can see that queue
control version requires smallest dedicated code, proving that easiness of
implementation of the method. Please note that the two implementations
for scheduling module replacement method are not complete, i.e., they do
not support whole functionality the original scheduling module has. It

April 6, 2007

15:12 Proceedings Trim Size: 9in x 6in

Il Job w/ Rsv.

| [Juob wio Rsv|

Head Node

=

gcal07

Rsv.
Queue
! ’ Head Node

v,
B

(A) Initial Status. The queue shown
left is the default queue that is tied up
to all the compute nodes.

Rsv.
Queue

(B) Reservation made. When the
reservation management module re-
ceives a reservation request from user,
it creates a queue (on the right) in sus-
pended status and returns the name of
the queue as the reservation ID. The
queue is tied to specific compute nodes,
but is not allowed to assign jobs to the
nodes.

(C) The users submit jobs to the newly
created queue. The jobs will not
be assigned until the reservation start
time, since the queue is created as sus-
pended.

(D) Reservation period starts. The
queue is activated. If the compute
nodes already have running jobs, PluS
kills the jobs and resubmits them to
the original queue, with g¢resub com-
mand. The jobs will start over on
the other compute nodes. The default
queue has lost control over the two
queues on the right.

Head Node

(E) During the reservation period. The
preempted job is re-assigned to the
other compute node.

Figure 4.

(F) Reservation period is over. The
reservation management module de-
activates and removes the reservation
queue. If some jobs for the queue
are still running, reservation manage-
ment module will kill them. It also re-
configure other queues so that they can
use the compute nodes

Implementation with the queue control method.

April 6, 2007

15:12 Proceedings Trim Size: 9in x 6in gcal07

14000
12000
10000
8000
6000
4000
2000

O GE queue base specific

O GE replace specific

B TORQUE specific

B Shared portion

TORQUE replace GE replace GE queue based

Figure 5. Evaluation based on Num. of lines.

means that implementation of the whole functionality will require much
more lines of codes.

5.2. Time to make/cancel Reservations

There is anticipation on the queue control method; it might have extra
overhead on reservation operations due to queue control commands issue.
We evaluated the overhead by comparing the execution time with PluS
implementation for Grid Engine with both methods.

The evaluation was performed on a small cluster with one head node
and four compute nodes with Pentium III 1.4 GHz Dual CPUs, with 2
GBytes memory, Redhat 8 Linux installed. We measured time spent for
making and canceling reservation using the ¢ime command.

We performed 10 experiments for each and got average number; 1.02[s]
for reservation and 0.92[s] for cancellation with the Scheduling Module Re-
placement Method, and 1.95[s] for reservation and 1.02[s] for cancellation
with the Queue Control Method. We can see that while both of them are
acceptably fast with the scheduling module replacement method is slightly
faster than the queue control method. The difference comes from gconf
command invocation which is required only in the queue control method.
We can also see that the difference between two methods is substantial
for making reservation, while it is not for cancellation. This is because
four gconf invocations are required for making reservation, while just one
is required for cancellation.

6. Related Work

Several commercial batch queuing systems, such as PBS Professional or
LSF, have advance reservation capability. There are also plug-in schedul-
ing modules for existing batch queuing system, that support advance reser-
vation, such as Maui and Catalina, They all does not provide two-phase

April 6, 2007 15:12 Proceedings Trim Size: 9in x 6in gcal7

commit protocol. The reason why they do not support two-phase com-
mit is that they are not meant for fully automatic co-allocation but for
reservation only for the single site.

Maui Scheduler 2 is a plug-in scheduler for TORQUE, ® which is devel-
oped by the Cluster Resources Inc., the maintainer of the TORQUE. Maui
scheduler is implemented in the scheduling module replacement method,
i.e., it completely replaces the scheduling module of TORQUE.

Catalina 8 is a scheduling module that can work with TORQUE and
Load Leveler. It is used in the Tera Grid project in US. Catalina provides
advance reservation capability, which is called "User-Settable Reservation’,
in Catalina terminology. Catalina is implemented in the scheduling module
replacement method. Another significant feature of Catalina is that it is
totally written in Python, allowing administrators to modify parameters
embedded in the source code.

Catalina prioritize jobs from ordinary queues over the reservation, while
PluS prioritize the reservation. Reservations are possible only when there
are no jobs scheduled for the time period, from the ordinary queue,

7. Conclusion

We proposed a reservation management system PluS that supports two-
phase commit protocol, to allow safe and efficient resource co-allocation on
the Grids. PluS works with existing queuing system such as TORQUE
or Grid Engine and provides them with advance reservation capability.
We proposed two implementation methods; scheduling module replacement
method and queue control method, and actually implemented PluS in both
way, and evaluated them.

We found that both of them have advantage and disadvantage. The
former has smaller overhead and flexibility to allow implementers for set-
ting up reservation policy, while it requires full re-implementation of the
scheduling module putting a huge burden on the implementers. The latter
is easy to implement but restricted in setting policy and have acceptable
but larger overhead.

For future work, we will address the following issues.

Resource specification improvements: Current implementation as-
sumes that the compute nodes are homogeneous and does not allow speci-
fying the resource characteristics, such as architecture, amount of memory
or disk space size. We will address this.

#Maui did work with Grid Engine previously, but current version does not.

April 6, 2007 15:12 Proceedings Trim Size: 9in x 6in gcal7

Sophisticated reservation policy: As described in 4.2, current imple-
mentation always gives highest priority on the reservation and the reserva-
tions are made first-comes-first-served base. Obviously, these will not be
acceptable for the production cluster administrators. We are designing a
mechanism to allow administrators to setup there own policy in a simple
script language, so that each administrator can describe a policy suitable
for his/her system.

Application to the other queuing systems: The queue control method
implementation will be easily applicable to the other queuing systems, if
the system supports queue control mechanism required by PluS. We will
confirm the easiness through application of the method to the other queuing
systems, such as Load Leveler or Condor.

Acknowledgement

This work is partly funded by the Science and Technology Promotion Pro-
gram’s ” Optical Paths Network Provisioning based on Grid Technologies”
of MEXT, Japan.

References

1. dbdobjects. http://www.db4o.com/.

2. Grid Engine. http://gridengine.sunsource.net.

3. Maui cluster scheduler. http://www.clusterresources.com/pages/products/-
maui-cluster-scheduler.php.

4. TORQUE Resource Manager. http://www.-
clusterresources.com/pages/products/torque-resource-manager.php.

5. Hidemoto Nakada, Atsuko Takefusa, Katsuhiko Ookubo, Makoto Kishimoto,
Tomohiro Kudoh, Yoshio Tanaka, and Satoshi Sekiguchi. Design and im-
plementation of a local scheduling system with advance reservation for co-
allocation on the grid. In Proceedings of CIT2006, 2006.

6. Atsuko Takefusa, Michiaki Hayashi, Naohide Nagatsu, Hidemoto Nakada,
Tomohiro Kudoh, Takahiro Miyamoto, Tomohiro Otani, Hideaki Tanaka,
Masatoshi Suzuki, Yasunori Sameshima, Wataru Imajuku, Masahiko Jinno,
Yoshihiro Takigawa, Shuichi Okamoto, Yoshio Tanaka, and Satoshi Sekiguchi.
G-lambda: Coordination of a grid scheduler and lambda path service over
gmpls. Future Generation Computing Systems, 22(2006):868-875, 2006.

7. Andrew S. Tannenbaum. Distributed Operating Systems. Prentice Hall, 1994.

8. Kenneth Yoshimoto, Patricia Kovatch, and Phil Andrews. Co-scheduling with
user-settable reservations. In Dror G. Feitelson, Eitan Frachtenberg, Larry
Rudolph, and Uwe Schwiegelshohn, editors, Job Scheduling Strategies for Par-
allel Processing, pages 146-156. Springer Verlag, 2005.

