An Implementation of
Sawzall on Hadoop

Hidemoto Nakadal, Tatsuhiko Inoue?1,
Hirotaka Ogawa!, Kudoh Tomohiro!

1. National Institute of Advanced Institute of Science and Technology

2. Soum, Corporation.

Background

* Broad acceptance of MapReduce
— As a new programming paradigm

 Native MapReduce program is not that easy.

— In Hadoop Mapper, Reducer, and driving program is
required.

— Not suitable for prototyping or incremental data
mining by end users

* High level languages for MapReduce are
proposed
— HiveQl, PiglLatin, Jagl, Sawzall
— Easy MapReduce programming for end users.

What is MapReduce?

* (relatively) new paradigm for parallel programming
* Inspired by higher order functions of functional languages

BTTIT

cduce @ —HEHEHDHD-

23e101S

How MapReduce Works

Map

Map

Reduce

Map

Reduce

Map

Reduce

Map

Reduce

23e401S

Background

* Native MapReduce program is not that easy.

— In Hadoop Mapper, Reducer, and driving program is
required.

— Not suitable for prototyping or incremental data
mining by end users

Hadoop Program Example

public class WordCount {

PUDTIC static Class Mlap extenas Mapper<Longwritanle, 1ext, 1ext, INtwritanie> {
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();

public void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
String line = value.toString();
StringTokenizer tokenizer = new M; M a p pe r
while (tokenizer.hasMoreTokens()) {
word.set(tokenizer.nextToken());
context.write(word, one);
}
}
}

public static class Reduce extends Reducer<Text, IntWritable, Text, IntWritable> {
public void reduce(Text key, Iterator<IntWritable> values, Context context)
throws I0Exception, InterruptedException {
intsum=0;
while (values.hasNext() Reducer
sum += values.next().get();
context.write(key, new IntWritable(sum));
}
}

public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = new Job(conf, "wordcount");

job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);

job.setMapperClass(Map.class); .
job.setReducerClass(Reduce.class); D river
job.setlnputFormatClass(TextInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class);
FilelInputFormat.addIinputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));

job.waitForCompletion(true);

Hadoop Java API

Background

* High level languages for MapReduce are
proposed

— HiveQl, PiglLatin, Jag'. Sawzall
— Easy MapReduce programming for end users.

Contribution

* Provide open source Sawzall implementation
— Compiler targeting Java code written in Scala

— Generates MapReduce codes
* Hadoop / SSS (AIST MapReduce)

e Evaluation
— Compilation speed

— Comparison with Szl — Google’s open source
implementation of Sawzall for sequential execution.

— Comparison with Native Hadoop code

Outline

Overview of Sawzall
Desigh and Implementation of SawzallClone
Evaluation

— Comparison with Szl
— Comparison with native Hadoop

Conclusion and Future work

Sawzall

* Alanguage desighed by Google for MapReduce
‘05 Pike, et al.]

 Programmers take care of only the Mappers.

* Reducers are provided by the language runtime.

— Map function just see one input. Operation on each
input is completely independent from others.

e c.f. Awk

— Reducers are abstracted out as ‘tables’
e Map functions just ‘'emit’ data into tables
e Tables are provided by language

Sawzall Example

Log analysis

proto "pédstat.proto”
submitsthroughweek: table sum[minute: int] of count: int;

log: P4ChangelistStats = input;
t: time = log.time;

minuteof(t)+
60* (hourof(t) + 24*(dayofweek(t)-1))

minute: int

emit submitsthroughweek[minute] <- 1;

Collection
Maximum
Sample
Sum

Top
Quantile
Unique

Sawzall tables

Overview of SawzallClone

e Sawzall script is just for Mappers
Reducer is provided as the aggregator libraries

* Implemented as a compiler in Scala, targeting Java code

* 4 modules, compiler, main driver program, mapper libraries,
and aggregator libraries.

Sawzall
script

Mapper Reducer
)

)
{ ! \

\
Compiler -[Compiled Code]
Aggregators

Mapper Library

SawzallClone execution

Master node

Sawza || Compiled Code
script Compiler Mapper Library
Aggregators

Compiled Code

Mapper Library

<

Aggregators

Compiled Code

Mapper Library

<

Compiled Code

Mapper Library

Aggregators

<

Aggregators

Compiled Code

Mapper Library

<

Aggregators

Worker node

Worker node

Worker node

Worker node

Compilation of Sawzall

* QOutput Java code, not byte code
— to ease implementation

e OQutput code is system neutral thanks to runtime libraries
— Runtime libraries hide the underlying system from the output code

— Same code works for Hadoop and SSS
Runtime

For
Hadoop 1 Jar file for
HadoopJ
Sawzall Java Java
script P source P classfile
Jar file for
I SSS J

Runtime
For
SSS

Sample Compiled Code

public class Mapper implements SCHelpers.Mapper {

@Override

public void map(SCHelpers.Emitter emitter,
Helpers.ByteStringWrapper global 0_input)

throws java.lang.Throwable {

Strmg ocal_0 document = BuildIn.func_string(global 0 _input);
List<String>local 1 words =

BuildIn.func_split(local 0 document);

Lon local 2 _i=0l;

forF Ioca_l 2 i) <

UI dln_func Ien(local _words)))?1l:01)) I=0l);
local_2_i) = ({(local_2_i) + (11)))) {

emitter. emlt(§tat|cs static_0_t,

BuildIn.func_bytes(

(local_1 words get“local 2_i).intValue())),
Buildin.func_bytes(1

Evaluation

 Compilation time
 Comparison with Szl

— SzIl: Google’s open source implementation of
Sawzall language

* Written in C++: both of the compiler and runtime
* No parallel implementation so far

— Comparison in Sequential execution

 Comparison with Hadoop Native
— In Parallel execution

Evaluation Environment

* Small Cluster
— Number of nodes: 16 + 1 (master)
— CPUs per node: Intel Xeon W5590 3.33GHz x 2
— Memory per node: 48GB
— OS: CentOS 5.5 x86_64
— Storage: Fusion-io ioDrive Duo 320GB

 Hadoop

— Hadoop 0.20.2
 HDFS replication =3
* Mapper /node =7

Compilation time

e SawzallClone compiles script on the fly
— 2 compilation and creation of a Jar file

e Tested with word count

Sawzall
script

=

Java
source

P classfile

Java

Mapper
Library

|

I

0.7 sec.

1.2 sec.

Jar
file

J submit

Comparison with Szl

 Target Program: Log analysis
e Sequential execution

— SawzallClone in a single VM

* Forlog items from 0.5 million to 2.5 million

Comparison with Szl

10 | | |
sz| ———
9 I SawzallClone .
8 |]
Constant

7 I About 3sec. n
— 6 - —
2L, Compilation+ h
) 5 s
£ launch cost ? /
=4l]

3 |]

2 |]

1 7

O | | |

500000 1e+06 1.5e+06 2e+06 2.5e+0¢€

No. of Entries

Comparison with Szl

1 O I I |

Inclination is almost

same. Means that

- execution speed is
almost same.

sz| ——

SawzallClone —»—

O]]]

500000 1e+06 1.5e+06 2e+06
No. of Entries

2.5e+0¢€

Comparison with Hadoop

* Log analysis
— Data size is fixed

* 0.1 billion records
e Divided into 64 files, 40MB each, 2.5GB in total.
e Replicated 3 times on HDFS

— # of nodes :1,2,4,8,16

Time [s]

Comparison with Hadoop

1000

900
800
700
600
500
400
300
200
100

0

Both shows
pretty good
scalability

| | |
SawzallClone +——

Java s---weee

of workers

Normalized with Native Hadoop

Normalized Elapsed Tim

1.2 r

0.8

0.6

04

0.2 |

Language

Overhead

of workers

Conclusion

* Sawzall implementation for Hadoop / SSS
— Compiler targeting Java

e Evaluation
— Compilation — Constant 1.2sec. overhead

— Comparison with Szl
* Constant overhead due to slow compilation
* Execution speed is comparable

— Comparison with Hadoop Native code
* Confirmed that it scales well

* Overhead is not negligible
* Further optimization required

Acknowledgement

* This work was partly funded by the New Energy
and Industrial Technology Development
Organization (NEDO) Green-IT project.

Thank you

Available at
http://code.google.com/p/sawzall-clone

