
National Institute of Advanced Industrial Science and Technology

A Java-based Programming Environment
for Hierarchical Grid: Jojo

Hidemoto Nakada (AIST / Tokyo-tech)

Satoshi Matsuoka (Tokyo-tech / NII)

Satoshi Sekiguchi (AIST)

CCGrid 4/20/2004 Chicago

The Grid, Today

Cluster of Clusters

With Firewalls

Private-addressed Client

Cluster

FireWall

Cluster

FireWall

Cluster

FireWallGatekeeper Gatekeeper Gatekeeper

CCGrid 4/20/2004 Chicago

The Grid, Today

The running job can talk with
the client, thanks to NAT

But cannot talk with each other

MPICH-G2 does not work
Client

Cluster

FireWall

Cluster

FireWall

Cluster

FireWallGatekeeper Gatekeeper Gatekeeper

CCGrid 4/20/2004 Chicago

The Grid, Today

Master-worker style program can
utilize the Cluster
But it will not scale for thousands of
nodes Client

Cluster

FireWall

Cluster

FireWall

Cluster

FireWallGatekeeper Gatekeeper Gatekeeper

master

worker

worker

worker

CCGrid 4/20/2004 Chicago

Problems, in summary

MPICH-G2 will not work well for private
addressed clusters

Master-worker style will not scale for
thousands of nodes.

Another problem: Installation cost

Installing user application on several clusters
can be a huge burden for the users

They also have to install the middleware

CCGrid 4/20/2004 Chicago

The Goal

Provide a programming environment that

Works with private addressed clusters

Scales to thousands of nodes

Ease the burden of installation

CCGrid 4/20/2004 Chicago

Key Idea: Hierarchical Grids

Have jobs also on the Firewall

Works as application level routers

Communication channels form a tree

Each job can talk with each other

No massive concentration

Take advantage
of the configuration

Client

Cluster Cluster

FireWallRouter Router

CCGrid 4/20/2004 Chicago

Jojo: a middleware for Hierarchical Grids

All the system is started up from the
Client, recursively

Forms communication channel tree

Protocol :Globus GRAM、ssh/rsh

Java, as the target program

All the programs are dynamically loaded
from the client

CCGrid 4/20/2004 Chicago

Jojo is Java based, because

Code portability

Good for heterogeneous environment

Integrated Thread support

Good for latency hiding

Lot of libraries are available

XML, Web related, network communication

CCGrid 4/20/2004 Chicago

Jojo ease the installation burden by

Automatically downloading the user
programs, and Jojo system program itself.

Avoids system version miss-match

Requires Java VM only on the cluster nodes

CCGrid 4/20/2004 Chicago

Starting up a Jojo Program
The client (the 1st level
node) invokes 2nd level
nodes, and the 2nd level
nodes invokes 3rd level
All the programs including
Jojo itself automatically
staged from the client

Boot strap server rjava

Client

Cluster

FireWall

Cluster

FireWallRouter Router

CCGrid 4/20/2004 Chicago

Bootstrapping with rjava

First of all small rjava server core will be staged
and executed

It provides a customized code loader
All the class binaries are loaded from the Client,
as needed, with the class loader

rjava Serverrjava Client
rjava Server

User Program

Jojo system

JojoSystem JojoSystem
User Prog. User Prog.

Send User Program

CLIENT REMOTE

Send JojoSend Bootstrap Server Program

SCP+SSH / GASS+GRAM

CCGrid 4/20/2004 Chicago

Programming model of Jojo

On Each node a representative Java Class will run

Subclass of the “Code” class

c.f. Applet

Object based messaging

The Classes on the node will talk each other with
passing Message

Incoming messages will be handled by separate
handler method

To overlap communication and computation

RPC style call is supported
Several message transfer modes are supported

CCGrid 4/20/2004 Chicago

The “Code” class

abstract class Code{
Node [] siblings; /** Brothers */
Node [] descendants; /** children */
Node parent; /** parent */
int rank; /** order in the brothers */

/** initialize */
public void init(Map arg);

/** actual task */
public void start();

/** handler to handle incoming messages */
public Object handle(Message mes);

}

CCGrid 4/20/2004 Chicago

Programming model of Jojo

On Each node a representative Java Class will run

Subclass of the “Code” class

c.f. Applet

Object based messaging

The Classes on the node will talk each other with
passing Message

Incoming messages will be handled by separate
handler method

To overlap communication and computation

RPC style call is supported
Several message transfer modes are supported

CCGrid 4/20/2004 Chicago

Transmission mode (1) send

Sender Receiver

rcv.send(o)

CCGrid 4/20/2004 Chicago

Transmission mode (2) blocking call

Sender Receiver

out = rcv.call(o)

CCGrid 4/20/2004 Chicago

Transmission mode(3) Future

Sender Receiver

f=rcv.callFuture(o);

out = f.touch();

CCGrid 4/20/2004 Chicago

Transmission mode(4) with Context

Sender Receiver

rcv.callwithContext(o, ctx)

The context is executed in
separate thread

CCGrid 4/20/2004 Chicago

Configuration Files

To specify
Nodes participates
Code to execute on each nodes
Invocation method to be used

Described in XML
Represent hierarchical structure

<!ELEMENT node (code?,invocation?,node*)>
<!ATTLIST node host CDATA #REQUIRED>
<!ELEMENT code (#PCDATA)>
<!ELEMENT invocation EMPTY>
<!ATTLIST invocation

javaPath CDATA #IMPLIED
rjavaProtocol CDATA #IMPLIED
rjavaRsh CDATA #IMPLIED
rjavaRcp CDATA #IMPLIED
xtermDisplay CDATA #IMPLIED
xtermPath CDATA #IMPLIED

>

CCGrid 4/20/2004 Chicago

Sample configuration file

<node host="root">
<code> PiMaster </code>
<node host="default">
<code> PiWorker </code>
<invocation
javaPath="java"
rjavaJarPath="/tmp/rjava.jar"
rjavaProtocol="ssh"
rjavaRsh="ssh"
rjavaRcp="scp"/>
</node>
<node host=“a00"/>
<node host=“a01"/>
<node host=“a02"/>
<node host=“a03"/>
</node>

Client

a00 a01 a02 a03

CCGrid 4/20/2004 Chicago

Sample configuration file, cont’d

<node host="root">
<code> PiMaster </code>
<node host="default">
<code> PiInter </code>
<invocation OMITTED/>
</node>
<node host=“GW-a">
<node host=“default">
<code> PiWorker </code>
<invocation OMITTED/>

</node>
<node host=“a00"/>
<node host=“a01"/>
<node host=“a02"/>
<node host=“a03"/>
</node>
<node host=“GW-b">
<node host=“default">
<code> PiWorker </code>
<invocation OMITTED/>
</node>
<node host=“b00"/>
<node host=“b01"/>
<node host=“b02"/>
<node host=“b03"/>

</node>
</node>

Client

GW-a GW-b

a00 a01 a02a03b00b01b02b03

CCGrid 4/20/2004 Chicago

A Sample Program

Calculate PI with random points
Randomly generates large number
of points in a square
Count the number in the arc
Calculate PI from the probability

Master – Worker model
Dynamic load balancing

PI ~= 4 *
no. points in the quadrant

no. of whole points

= 4 *
15

19

= 3.1579...

CCGrid 4/20/2004 Chicago

A Sample Program (cont’d)

Self-scheduling for load
balancing
Worker

Request the number of
points to generate to the
Master
Return the number with in
the quadrant

Master
On request, provide the
number to the worker
Accumulate the number of
points in the quadrant and
whole.

master

worker worker worker

REQ

RESULT

CCGrid 4/20/2004 Chicago

Sample Program (Worker)

public class PiWorker2 extends Code{

public void start() throws JojoException{
long trialTimes = 0, doneTimes = 0;
while (true){
Message msg =
new Message(MSG_TRIAL_REQUEST,

new long[]{trialTimes, doneTimes});
trialTimes =

((Long)(parent.call(msg))).longValue();
if (trialTimes == 0) break;
doneTimes = trial(trialTimes);
}
}

private long trial(long trialTimes){
long counter = 0;
for (long i = 0; i < trialTimes;i++){
double x =

random.nextDouble();
double y =

random.nextDouble();
if (x * x + y * y < 1.0)
counter++;
}
return counter;
}
}

Compose a message

Send the message and get the result

CCGrid 4/20/2004 Chicago

Sample Program (Master)

public class PiMaster2 extends Code{
……
synchronized public Object handle(Message msg)
throws JojoException{
if (msg.tag == PiWorker.MSG_TRIAL_REQUEST){
long [] pair = (long[])(msg.contents);
doneTrial += pair[0];
doneResult += pair[1];
if (doneTrial >= times){
synchronized (this) {done = true; notifyAll();}
return new Long(0);

} else
return new Long(perNode);

} else
throw new JojoException(
"cannot handle the message: " + msg);

}
}

Check the Message

Return the number to try

CCGrid 4/20/2004 Chicago

Preliminary Evaluations

Throughput measurement

WAN / LAN

GSI / SSH

Master-Worker program

2 Layered / 3 Layered

CCGrid 4/20/2004 Chicago

TITECH AIST

Client A

Client B

Server

Linux PC
Athlon 1.2GHz

Linux PC
Pentium III 1.4GHz

Linux PC
Pentium III 1.4GHz50 miles

Gigabit
Ether

Throughput measurement
In LAN and WAN

AIST and Titech

GSI(Globus I/O) and SSH

GSI uses pure-Java SSL
No encryption, integrity check only

SSH uses external OPEN SSH
Written in C

Throughput: 10 Mbyte/s

Latency: 7 ms

Throughput: 54.3 Mbyte/s

Latency: 0ms

CCGrid 4/20/2004 Chicago

Result(WAN)

WAN ThroughputWAN ThroughputWAN ThroughputWAN Throughput

0.00.00.00.0

1.01.01.01.0

2.02.02.02.0

3.03.03.03.0

4.04.04.04.0

5.05.05.05.0

6.06.06.06.0

7.07.07.07.0

8.08.08.08.0

9.09.09.09.0

0000 0.50.50.50.5 1111

size [Mbyte]size [Mbyte]size [Mbyte]size [Mbyte]

T
h
ro

u
g
h
p
u
t[

M
b
y
te

/
s
]

T
h
ro

u
g
h
p
u
t[

M
b
y
te

/
s
]

T
h
ro

u
g
h
p
u
t[

M
b
y
te

/
s
]

T
h
ro

u
g
h
p
u
t[

M
b
y
te

/
s
]

GSIGSIGSIGSI
SSHSSHSSHSSH

•Bandwidth of the link is
10Mbyte/s
•70-80 % of the bandwidth

SSH is faster slightly

CCGrid 4/20/2004 Chicago

Result(LAN)

LAN ThroughputLAN ThroughputLAN ThroughputLAN Throughput

0.00.00.00.0

2.02.02.02.0

4.04.04.04.0

6.06.06.06.0

8.08.08.08.0

10.010.010.010.0

12.012.012.012.0

14.014.014.014.0

0000 0.50.50.50.5 1111

size [Mbyte]size [Mbyte]size [Mbyte]size [Mbyte]

T
h
ro

u
gh

p
u
ts

[M
b
yt

e
/
s
]

T
h
ro

u
gh

p
u
ts

[M
b
yt

e
/
s
]

T
h
ro

u
gh

p
u
ts

[M
b
yt

e
/
s
]

T
h
ro

u
gh

p
u
ts

[M
b
yt

e
/
s
]

GSIGSIGSIGSI

SSHSSHSSHSSH

•Bandwidth of the link is
54Mbyte/s
•Just 20% of the Band width

SSH is much Slower than GSI

CCGrid 4/20/2004 Chicago

Master-Worker evaluation

Compare 2-layered and 3-layered setting

Client

Cluster
Node

Cluster
Node

Cluster
Node

Management
Node

Client

Cluster
Node

Cluster
Node

Cluster
Node

2layered setting 3layered setting

Workers Workers

Master

Master

CCGrid 4/20/2004 Chicago

Experiment Environment

CATV＋＋＋＋Wireless LAN

Giga-Ether in the Clsuter

Master-worker PI

104 tasks

Execution time for a
single task is around 8ms

Client

Cluster

Node

Throughput:

to Cluster: 0.07 Mbyte/s

from Cluster:0.17 Mbyte/s

Latency: 150ms

Throughput:

54.3 Mbyte/s

Latency: 0ms

Linux in VMWare

Pentium 4 1.8GHz

Gigabit

Ether

Cluster

Node
Cluster

Node
Cluster

Node
Linux PC

Pentium III 1.4GHz

Dual x (32 + 1)

Management

Node

WorkerWorkerWorkerWorker

Master

Master

CCGrid 4/20/2004 Chicago

Master-Worker result

0.00.00.00.0

50.050.050.050.0

100.0100.0100.0100.0

150.0150.0150.0150.0

200.0200.0200.0200.0

250.0250.0250.0250.0

300.0300.0300.0300.0

350.0350.0350.0350.0

400.0400.0400.0400.0

0000 5555 10101010 15151515 20202020

No. of workersNo. of workersNo. of workersNo. of workers

e
la

p
s
e
d
 t

im
e
[s

]
e
la

p
s
e
d
 t

im
e
[s

]
e
la

p
s
e
d
 t

im
e
[s

]
e
la

p
s
e
d
 t

im
e
[s

]

3-layered3-layered3-layered3-layered

2-layered2-layered2-layered2-layered

Single-nodeSingle-nodeSingle-nodeSingle-node

•Scales up to 8 nodes

• Scales up to 16 nodes
• Much faster than 2-
layered

CCGrid 4/20/2004 Chicago

Discussion

Data size for each task is just few bytes
Data transfer time is negligible
Latency does slow the execution

Execution time for each task is just 8ms
This application may be not suitable for master-
worker execution

As shown in the 2-layered model score

Still can be effectively executed in 3-layered
model

CCGrid 4/20/2004 Chicago

Summary

Jojo works well with hierarchical Grids

Firewall-aware

No-pre installation required

Jojo Provides simple, easy-to-use API

To hide latency

Preliminary evaluation shows

It is fast enough for WAN

With hierarchical setting we can take
advantage of high speed LAN for master-
worker programs

CCGrid 4/20/2004 Chicago

Future work

Scalability evaluation

Planning to perform experiments with
thousands of PEs using Genetic Algorithm and
Branch and Bound method programs

Fault Tolerance

Single trouble may stop the whole computation

Jojo API designed to be generic, but we found
that the API design is preventing the system
being FT

Redesign the API to enable Jojo to be FT

National Institute of Advanced Industrial Science and Technology

Thank you!

