
A Java-based Programming Environment for Hierarchical Grid: Jojo

Hidemoto Nakada
National Institute of Advanced Industrial

Science and Technology (AIST)
1-1-1 Umezono, Tsukuba, 305-8568, Japan

hide-nakada@aist.go.jp

Satoshi Matsuoka
Tokyo Institute of Technology

2-12-1 Ookayama, Tokyo, 152-8550, Japan
matsu@is.titech.ac.jp

Satoshi Sekiguchi
National Institute of Advanced Industrial

Science and Technology (AIST)
1-1-1 Umezono, Tsukuba, 305-8568, Japan

s.sekiguchi@aist.go.jp

Abstract

Despite recent developments in higher-level middleware
for the Grid supporting high level of ease-of-programming,
hurdles for widespread adoption of Grids remain high, due
to (1) assumption of peer-to-peer connectivity of all Grid
nodes, as well as (2) lack of scalable programming and de-
ployment support. We propose a Java-based programming
environment for a hierarchically organized Grid named
Jojo, that allow seamless utilization of private-addressed
clusters. Jojo provides several features, including secure
private remote invocation using Globus GRAM and ssh/rsh
to privately-addressed nodes in clusters, intuitive message
passing API suitable for overlapped execution using mul-
tiple threads, and automatic user/system program staging.
Using Jojo, users can easily construct and execute paral-
lel distributed applications on the Grid. We show its design
and implementation, ppprogramming API, a working exam-
ple, as well as preliminary performance evaluation results
that prove effectiveness of hierarchal execution.

1. Introduction

Recent developments in high speed networking enables
collective use of globally distributed computing resources
as a huge single problem solving environment, a.k.a. the
Grid. Currently, the Globus Toolkit[6] serves as the ‘de-
facto standard’ lower-level infrastructure for the Grid, and
on top it, several middleware systems have been proposed
to ease the programming effort, including th GridRPC sys-
tem Ninf-G[11] and the MPICH-G2[8] that implements
MPI programming over heterogeneous nodes on the Grid.

Such systems have been proven useful to provide ease-of-
programming above Globus in a number of real-life appli-
cation projects and deployments.

One of the shortcomings of such systems is, however,
that they assume all the computers in the environment have
globally accessible addresses and can communicate directly
with each other. This means that they cannot utilize clusters
enclosed inside firewalls, with nodes that use private IP ad-
dresses. Furthermore, to utilize these systems, users have
to install and set up all the necessary middleware as well
as user application programs on each and every computer.
The resulting hurdles are quite high, and in fact can be con-
sidered one of the primary inhibitors towards widespread
adoption of the Grid.

To resolve these problems, we propose a Java based pro-
gramming environment for the Grid, called Jojo, which is
suitable for Grids composed of multiple privately-addressed
clusters. Jojo provides several features to ease the program-
mer/users burden, including secure recursive remote invo-
cation via Globus GRAM and ssh/rsh, intuitive message
passing API which enables latency hiding in conjunction
with the Java’s thread feature, and automatic user/system
program staging. Using Jojo, users can construct and ex-
ecute his own parallel distributed application on the Grid
with ease. We describes the design and implementation of
Jojo, its programming API, configuration file syntax and a
working program example. We also show preliminary per-
formance evaluation results, demonstrating that the perfor-
mance of Jojo is acceptable and hierarchical execution is
effective for programs that could exploit such hiearchical
topologies of its underlying nodes, such as search problems.

Cluster B

Router

Client

Router

Cluster A

1st-Layer

2nd-Layer 2nd-Layer

Figure 1. Cluster of clusters.

2. Hierarchical Grid Environment

PC clusters are now serving as the primal computation
resources for the Grid environment. In a sense, the underly-
ing execution environment of the Grid can be considered as
a large cluster of PC clusters over heterogeneous domains,
interconnected by fast networks.

The problem is that, due to security issues and exhaus-
tion of the IP address space, it is becoming increasingly
common for individual nodes of clusters to be assigned pri-
vate IP addresses. As a result, while their individual nodes
can initiate connection to outside of the cluster, typically
using the NAT (Network Address Translation) feature pro-
vided by the router, they cannot accept connections from
the outside. The consequence of this is that a node in a clus-
ter cannot directly communicate with a node in other clus-
ters.

As a result, most Grid middleware assuming global
node-to-node communication connectivity becomes inop-
erable. For example, MPICH-G2 will not be able to exe-
cute on these kinds of clusters, because it assumes global
node-to-node connectivity. Tanaka [10] attempted to re-
solve this problem with a proxy server called NX-proxy,
which works as an application level address transla-
tor. While it worked for some Globus-enabled middle-
ware and applications, the appoach was rather ad-hoc,
and it was not effective for programs that embed IP ad-
dresses in the packets at the application-level. More-
over, maitaining properly-tracked versions of NX-proxy
turned out to be quite tedious. As such, there are no ver-
sions of NX-proxy that would work over later version of
Globus (2.X, and 3.X).

Some middleware such as Ninf-G, have been designed
to utilize such clusters. Initially, the Ninf-G client needs to
contact the representative cluster node with a Global IP ad-
dress. Then, Globus GRAM will invoke an executable on
a privately addressed node via a backend queueing system.
Individual executable can then in turn connect back to the
client with appropriate address translation provided by the
NAT router.

However, in this configuration, all the connections will

eventually be centralized to the client. In order to facilitate
a set of clusters with possibly hundreds or even thousands
of nodes in total, a single client must single-handedly main-
tain hundreds to thousands of connections. This solution is
obviously not scalable not only due to excessive load on the
client resulting from handing hundreds to thousands of data
streams, but also due to limitations of file descriptors im-
posed by the underlying operating systems.

To cope with the problem, we propose to consider the
cluster of clusters as a hierarchically composed Grid. The
first layer is globally addressed and composed of client
nodes as well as ”representative” router nodes of clusters.
The second layer is all the privately-addressed cluster nodes
as well as the router nodes. We also assume that nodes in a
cluster cannot communicate with the outside only indirectly
via the router nodes.

Although such a hierarchical structure may seem restric-
tive, a surprising number of Grid applications will execute
and scale well in such an environment; in fact we can take
advantage of the underlying configuration to speedup appli-
cations: for example, a simple master-worker applications
may run faster when the master installed on the router node
instead of the remote client, due to the reduced latency be-
tween the master and worker. also, for more complicated
problems, if we can map the structure of the problem onto
the network structure properly, we might attain speed up re-
ducing the communication over low speed networks. [2]

3. The Design of Jojo

Jojo is designed to have the following characteristics:

• Hierarchical architecture that suite the underlying hi-
erarchical structure of typical Grid environments

• Flexible and simple message passing API which takes
advantage of the Java thread facility.

• Automatic program staging that ease the burden of in-
stalling the system onto servers.

3.1. Architecture

Jojo can be configured in a hierarchical tree form to suite
in the hierarchical Grid environment discussed in the previ-
ous section. In Jojo, each computer in the system is called a
‘node’. Each node executes its own class on a seperate Java
virtual machine and can communicate with its parent node,
its child nodes, and its siblings via its parent.

3.2. API Design

There are several existing Java based communica-
tion libraries, including RMI[4] from Sun microsys-
tems, JPVM[5] which is a PVM implementation in

2

Java, and mpiJava[3] which is a MPI implementation
in Java. JCluster[1] provides both RMI and MPI inter-
faces.

RMI provides distributed object model based on syn-
chronous remote message invocation. RMI is easy to use
and its model is general and expressive. The down side
is that RMI itself does not support parallel execution fea-
ture. Users have to explicitly use thread to write parallel
programs. MPI/PVM provides a message passing model
which uses explicit send and receive. The model is origi-
nally meant to work with C and Fortran, which do not have
language-integrated thread support. If we were to hide la-
tency by taking advantage of multi-thread feature of Java,
this model would not be very suitable due to the necessity
of multiple sender/receiver matching, as well as the diffi-
culty of buffer management to achieve thread safety.

Jojo employs a messaging model that can be considered
a “hybrid” between distributed object and message pass-
ing. In Jojo, just one representing active object runs on each
node. The active object can send/receive messages to/from
other active objects on respective nodes. Users can specify
different representative active object class for each node.
Jojo provides explicit “send” method, but no “receive”.
Messages are automatically handled by a user defined han-
dler when they arrive. To support RPC-like behavior, i.e.,
“receiving a reply just after sending a request” that happens
often in parallel programs, Jojo also provides a set of “call”
methods.

The message passing API is carefully designed to en-
able overlapping of data transfer and execution, taking ad-
vantage of Java multithreading. The details of the API will
be shown in the next section.

3.3. Invocation of servers

In a Grid environment, we cannot always assume the ex-
istence of shared filesystems. Installing all the user pro-
grams properly to all the servers that have been brokered
can be a heavy burden for users. Jojo automatically stages
all the user programs from the client node to all the server
nodes.

As a matter of a fact, the core portions of the Jojo sys-
tem itself is also automatically staged to the servers, avoid-
ing potential user misconfigurations, thereby greatly reduc-
ing the burden of installation and maintenance of latest ver-
sions of Grid middleware.

4. The System Details of Jojo

4.1. Invocation on Remote Hosts via RJava

To reduce the users’ burden of installation, Jojo automat-
ically stages not only the users program but also the sys-

abstract class Code{
Node [] siblings; // Sibling nodes
Node [] descendants; // child nodes
Node parent; // parent nodes
Node self; // reference to myself
int rank; // order in the siblings

public void init(Map arg); // initialize
public void start(); // the body
public Object handle(Message mes); // handler

}

Figure 2. Code Class

tem program itself. The automatic staging is enabled by the
bootstrapping server RJava[9] as follows:

1. The bootstrapping server module is encapsulated in
a jar file, which includes a customized class loader
which is designed to load classes via network connec-
tion.

2. The RJava client sends the jar file to the server and in-
vokes RJava server using the jar file, making connec-
tion between client and server.

3. The RJava server invokes the Jojo system classes
which are loaded by the customized class loader.
The net result is that the Jojo class files are actu-
ally loaded from client file system and sent to the
server.

4. The Jojo system classes, in turn, invoke the user sup-
plied classes, which are also loaded on the client side
and transferred to the server.

5. On the client side, the Jojo system classes are invoked
by the RJava client. The user classes are also invoked
by the Jojo system classes.

RJava supports Globus GRAM and ssh/rsh as Invocation
Protocols. In ssh/rsh mode, the client ships the bootstrap
server jar file to the server by using scp/rcp in advance, and
then invokes it on a Java VM using ssh/rsh. In the Globus
mode, Jojo uses file staging facility which is provided by
the GRAM protocol to ship the jar file.

For multiplely-layered invocation, the process described
above will repeatedly occur. The class file load requests, is-
sued by the class loader embedded in the bootstrap server,
is always delegated to the original client host.

4.2. The Jojo Programming API

To write programs for Jojo, programmers have to “ex-
tend” an abstract class called Code using supporting classes
called Node and Message.

4.2.1. The Code Class Figure 2 shows the definition of
the Code class. The class has references to the siblings, de-
scendants, and parent nodes. It also has a reference to itself.

3

Sender Receiversend Sender Receivercall
Sender ReceivercallWithFuture

A BC
touch() Sender ReceivercallWithContextD

Figure 3. Various Communication Modes

These reference can be transfered to other nodes by embed-
ding them in node-to-node messages.

The programmer has to implement three methods;
init, start, and handle. The init method is the ini-
tialization code for the class. The properties specified by
the user as the invocation argument will be passed as the ar-
gument for this method. The start and the handle
method will never be called until this method finishes.

The start method is the main program for the class.
This method will be called by the system, just once.

The handle method is the message handler. This
method will be called every time when the node re-
ceives a message from other nodes. Each message is han-
dled in a dedicated thread to enable overlapped handling
of messages. Therefore, however long the time may be re-
quired to handle a message, other messages will not be af-
fected. On the other hand, programmers have to take care
of racing conditions when handlers access shared data.

If a programmer is not willing to take on this burden,
he/she can easily make all the handler invocations serialized
by just putting asynchronous modifier to this method.

4.2.2. The Node Class The instances of this class are ref-
erences to the other nodes in the system, and provide com-
munication methods to other nodes. This class implements
four types of communication for programmer flexibility.

void send(Message msg)
This method simply sends a Message object, de-
scribed below, to the target node and returns immedi-
ately(figure 3:A).

Object call(Message msg)
This method sends a Message object, waits for reply
from the communication peer, and returns the object to
the caller(figure 3:B).

Future callFuture(Message msg)
This method provides future based asynchronous com-
munication: it sends a Message object and immedi-
ately returns with a Future object without waiting
for a reply. The caller can access the reply by calling

the touch() method of the Future object. If the
reply has already arrived, the method immediately re-
turns, and if not, it blocks waiting for the reply crom
the callee (figure 3:C).

void callWithContext(Message msg,
Context context)
This method provides another asynchronous commu-
nication method: it returns immediately after send-
ing the message. It takes a Object that implements
Context interface which have run(Object o)
method. When the reply arrives, the run method will
be invoked with the reply object as the argument,
in a newly created thread (figure 3:D). Please note
that proper synchronization is required when the run
method accesses shared data as mentioned earlier.

4.2.3. The Message Class The Message class represents
messages transfered among nodes. The class have three
fields: the integer tag field, the contents field with
type Serializable, and the from field whose type is
Node. Tag represent message id number to distinguish
message, and can be arbitrary defined by the programmer.
The contents field stores the message body object. The
from field represents the message sender node. This field
only makes sense at the receiver side, and is automatically
instantiated by the system during the transfer of the mes-
sage.

4.3. Configuring the Jojo system on a Hierarchical
Grid

To start up a Jojo program, programmers have to specify
the configuration of computers available on the Grid, invo-
cation protocols to be used, and Code class to run on each
node. Since the configuration of computers can be multi-
hierarchical, the configuration file format itself has to be
able to express such kind of configuration. Since the Java
standard properties file format cannot meet this condition,
we define an XML-based configuration schema for the file
format.

There are three elements in the schema; node, code,
and invocation. The node element defines a node, em-
bodying a host attribute which specifies the hostname of
the node. It also defines a code element, an invocation ele-
ment (both of which can be empty), and zero or more node
element in it. Node elements in a node element stand for
computers subject to invocation by the containing node. The
code element specifies the classname for the code. The
invocation element specifies invocation protocols and
parameters to invoke the code. Additionally, the value of
the host attribute allows the attachement of the default key-
word. The node element definition that has this keyword is
treated as the default values for other nodes, allowing con-

4

cise description of node configurations. A sample working
configuration file will be shown in section5.

4.4. File I/O redirection

File I/O is often required during program execution for
reading configuration and/or input data files, and writing re-
sults and/or logs to files. Jojo provides (almost) transparent
access to the file system of the client node, enabling pro-
grammers to write their programs without concerns for of
the location where the program actually runs, without ex-
plicit support of distributed filesystems such as NFS/AFS
in the backend clusters (in fact in a true Grid environment
NFS not AFS would not appropriately work.)

The use of this facility is simple: merely sub-
stitute Jojo classes RemoteFileReader and
RemoteFileWriter instead of Java standard
FileReader and FileWriter. This facility is imple-
mented as files being streamed in real time instead of being
staged in/out. As a result, information logged by a server
side program will instantly appears on the client file sys-
tem, enabling realtime monitoring of the server program
behavior.

5. Sample Program

Here, we show a master-worker program to calculate PI
using the Monte-Carlo method. Figure 4 shows the master
and 5 shows the worker. This program performs dynamic
load balance using self-guided scheduling; the worker re-
quests a chunk of jobs from the master, solves it, returns the
result, and request another chunk. In this program return-
ing a result and requesting jobs are encoded into a single
message to simplify the program.

To execute this program, Jojo requires a configuration
file and a properties file. The configuration file shown in fig-
ure 6 specifies to execute the program with ssh connection,
using computers named pad00, pad01, pad02 and pad03.
Note that code and invocation elements are efficiently
shared by all the nodes, using the “default” notation.

Properties file for this program is shown immediately be-
low:

times=100000
divide=100

The attributes in the file specifies Monte-Carlo trial times
and division number for load distribution.

The program is executed from the command line in the
following manner ,where configuration file and properties
file are named jojo.conf and pi.prop, respectively.

> Java silf.jojo.Jojo jojo.conf pi.prop

public class PiMaster extends Code{
long times, perNode;
int divide;
boolean done = false;
long doneTrial = 0, doneResult = 0;

public void init(Map prop) throws JojoException{
times =

Long.parseLong((String)prop.get("times"));
divide =

Integer.parseInt((String)prop.get("divide"));
perNode = times / divide;
}

public void start() throws JojoException{
synchronized (this){
while (!done){
try {wait();}
catch (InterruptedException e) {}
}
System.out.println("PI = " +
(((double)doneResult/doneTrial)*4));

}
}

synchronized public Object
handle(Message msg) throws JojoException{
if (msg.tag == PiWorker.MSG_TRIAL_REQUEST){
long [] pair = (long[])(msg.contents);
doneTrial += pair[0];
doneResult += pair[1];
if (doneTrial >= times){
done = true;
notifyAll();
return new Long(0);

} else
return new Long(perNode);

} else
throw new JojoException(
"cannot handle the message: " + msg);

}
}

Figure 4. Master Program

public class PiWorker extends Code{
static final int MSG_TRIAL_REQUEST = 1;
Random random = new Random();

public void start()
throws JojoException{
long trialTimes = 0;
long doneTimes = 0;
while (true){
Message msg =
new Message(MSG_TRIAL_REQUEST,

new long[]{trialTimes, doneTimes});
trialTimes =

((Long)(parent.call(msg))).longValue();
if (trialTimes == 0) break;
doneTimes = trial(trialTimes);

}
}

private long trial(long trialTimes){
long counter = 0;
for (long i = 0; i < trialTimes; i++){
double x = random.nextDouble();
double y = random.nextDouble();
if (x * x + y * y < 1.0)
counter++;

}
return counter;
}
}

Figure 5. Worker Program

5

<node host="root">
<code> PiMaster </code>
<node host="default">

<code> PiWorker </code>
<invocation
javaPath="java"
rjavaJarPath=
"/usr/users/nakada/bin/rjava.jar"

rjavaProtocol="ssh"
rjavaRsh="ssh"
rjavaRcp="scp"
/>

</node>
<node host="pad00"/>
<node host="pad01"/>
<node host="pad02"/>
<node host="pad03"/>

</node>

Figure 6. Configuration file for the sample
program

TITECH AIST

Client A
Client B

Server

Throughput: 10 Mbyte/s
Latency: 7ms

Throughput: 54.3 Mbyte/s
Latency: 0msLinux PC

Athlon 1.2GHz

Linux PC
Pentium III 1.4GHz

Linux PC
Pentium III 1.4GHz

50 miles

GigabitEther

Figure 7. Evaluation Environment for
throughput.

6. Preliminary evaluations

To evaluate the basic performance of Jojo, we measured
its throughput between nodes. And to validate its layered
architecture, we conducted an experiment with the simple
master-worker program shown in the previous section.

6.1. Throughput Evaluation

We measured throughput using Globus (hereafter re-
ferred to as GSI) and ssh(hereafter referred to as SSH),
in an environment shown in figure 7. We call WAN the ex-
periment between TITECH and AIST, whose physical dis-
tance is approximately 80kms, and LAN the experiment in-
side AIST.

Figure 8 shows results measured in LAN. SSH and GSI
exhibited 12Mbyte/s and 8Mbyte/s. Although reasonably
fast, compared to the native Gigabit Ethernet bandwidth we
are penalized considerably. Also, GSI exhibited somewhat

0

2

4

6

8

10

12

14

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
hr

ou
gh

pu
ts

 [M
 b

yt
es

/s
]

Data size [Mbytes]

Jojo SSH
Jojo GSI

Figure 8. Throughput in LAN Environment

0

1

2

3

4

5

6

7

8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
hr

ou
gh

pu
ts

 [M
 b

yt
es

/s
]

Data size [Mbytes]

Jojo SSH
Jojo GSI

Figure 9. Throughput in WAN Environment

slower performance compared to SSH. We believe that the
overhead is mainly due to the encryption/decryption per-
formed in SSH and Globus I/O, as well as stream multi-
plexing and switching that occurs within RJava.

Figure 9 shows the results measured in WAN. We can
see that the difference between GSI and SSH is smaller,
and they both exhibit approximately 70% of the 10Mbyte/s
bandwidth which is the speed cap between TITECH and
AIST. This is because the low speed network is hiding the
overhead posed by Jojo and the underlying SSH/GSI.

6.2. Evaluation by Master-Worker program

Here, we validate the effectiveness of the layered archi-
tecture, comparing performances on two different setup for
a master-worker program.

6.2.1. Evaluation Environment We used the pro-
gram shown in section 5. We used a PC cluster installed at
AIST via the Internet connection from a remote client. Fig-
ure 10 shows the cluster performance and network setup.

6

Client

Cluster
Node

Throughput:
to Cluster: 0.07 Mbyte/s
from Cluster:0.17 Mbyte/s

Latency: 150ms

Throughput:
54.3 Mbyte/s

Latency: 0ms

Linux in VMWare
Pentium 4 1.8GHz

GigabitEther
Cluster
Node

Cluster
Node

Cluster
Node

Linux PC
Pentium III 1.4GHz
Dual x (32 + 1)

Management
Node

Figure 10. Master-Worker evaluation environ-
ment.

Client

Cluster
Node

Cluster
Node

Cluster
Node

Management
Node

Client

Cluster
Node

Cluster
Node

Cluster
Node2layers model 3layers model

Workers Workers
Master

Master

Figure 11. Master-Worker setup.

We set up two experiments; 2-layered and 3-layered.
For 2-layered setup, we ran the master on the 1st layer and
the worker on the 2nd layer. For 3-layered setup, we ran the
master on the 2nd layer and the worker on the 3rd layer; the
1st layer does nothing (figure 11).

We used the same PC cluster for workers. In the 3-
layered setup, we employed the administration node of the
cluster as the 2nd layer node. Since the administration node
is directly connected to the same network switch as the clus-
ter nodes, the communication speed between administration
node and a cluster node is same as the speed between clus-
ter nodes.

We conducted a Monte-Carlo simulation of 100 million
trials, divided into 10,000 jobs of 10,000 trials, in a master-
worker setup. 10000 trials take approximately 8ms on a sin-
gle node. We used ssh for all communication 1.

Figure 12 shows the result. The single-node line shown
in the graph represents the performance of a single program
execution time on a node of the cluster.

1 Since ssh does not provide single sign-on capability, we cannot use
ssh for the connection between the 2nd and the 3rd layer. Here,
we cope this problem as follows. In advance, we logged in the
second-layer, started up ssh-agent and got the SSH AUTH SOCK and
SSH AGENT PID environment variable values that are required to ac-
cess the ssh-agent. We gave Jojo these values as the configuration file
entry. The Jojo 2nd layer node accessed the ssh-agent with these val-
ues and invoked 3rd layer.

0

50

100

150

200

250

300

350

400

0 2 4 6 8 10 12 14 16

E
la

ps
ed

 ti
m

e
[s

]

No. of Workers

3 layers
2 layers

single node

Figure 12. Master-Worker result in 2layer and
3layer.

We can see that 3-layered model is faster than 2-layered
model for all the number of nodes, and 2-layered model
does not show speed up for nodes larger than 8, while 3-
layered model exhibits speedup up to 16 nodes.

6.2.2. Discussion In this program, data transferred be-
tween master and worker is just a single long integer. For
such types of programs, communication throughput be-
tween master and worker does not have big impact on the
performance, but latency does. When a worker finishes a
job, it requests a new job to the worker and idles till the new
job arrives. The idle time depends on the latency between
the master and workers, and excessive idle time causes per-
formance degradation.

The program used in this experiment would usually be
considered unsuitable for parallel execution on the Grid,
since the worker runs just 8ms per each work assignment,
far shorter than network latencies in a wide-area environ-
ment. This is supported by the low performance in the
2-layered setup experiment. On the other hand, 3-layered
setup shows sufficient speedup. This is because the commu-
nication between the master and workers occurred only in-
side the high-speed local area network. This result implies
that certain classes of applications usually considered be-
ing not suitable for the Grid can be effectively executed on
the Grid using multi-layered architecture provided by Jojo.

To conduct these experiments, neither program installa-
tion nor daemon program start-up are required for the server
side clusters. Only the SSH/RSH daemon or Globus GRAM
gatekeeper needs to be running inside each cluster node.
This fact supports effectiveness of automatic user/system
program shipping provided by Jojo .

7

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16

S
pe

ed
 u

p

No. of Workers

Large
Small

lenear

Figure 13. Speed up of protein 3-dimensional
structure optmization.

6.3. Evaluation using a Real Application

Here, we show the result of an evaluation using a
real application. As the application, we employed pro-
tein 3-dimensional structure optmization using NMR
spectroscopy. We solved this problem using genetic al-
gorithm according to a literature[7]. We parallelized the
genetic algorithm program using Jojo based on mas-
ter worker style.

As an evaluation platform, we again used the cluster
shown in figure 10. For this experiment, we set up all the
master and workers on the cluster. We performed two ex-
periments with two proteins; small, with 13 residual, and
large, with 27 resudual.

Figure 13 shows the speedup against the number of
workers. With a small protein, speedup saturates for more
than 8 workers, in contrast to the case with large protein
which scales well up to 16 workers.

7. Conclusion

We proposed a Java based communication library that is
suitable for the Grid environment consisting of privately-
addressed PC clusters. It allow easy specification of multi-
hierarchical communication tree on PC clusters and its uti-
lization to achive effective master-worker computation. It
also provides easy-to-use and multi-thread-aware message
passing API, suitable to hide latency in the Grid environ-
ment.

The evaluation shows that its basic throughput is accept-
able, and for master-worker programs multi-hierarchical
composition is effective.

For the future work, we will address following issue:

• Validation of scalability. Jojo is designed with scala-
bility in mind, but its scalability is not proven yet. We

will conduct experiments using large scale setup with
more than 1000 CPUs to confirm scalability on a large
Grid to be installed consisting of nodes at AIST and
TITECH.

• Fault tolerance. Currently, Jojo does not provide any
capability for fault tolerance. If one node dies during
computation, the whole system may freeze or fail, just
as it is with MPI programs. We will address this issue
defining higher level API on top of or with a small ex-
tension to the Jojo API.

References

[1] Jcluster. http://vip.6to23.com/jcluster/.
[2] K. Aida, W. Natsume, and Y. Futakata. Distributed com-

puting with hierarchical master-worker paradigm for parallel
branch and bound algorithm. In Proc. 3rd IEEE/ACM In-
ternational Symposium on Cluster Computing and the Grid
(CCGrid 2003), 2003.

[3] M. Baker, B. Carpenter, G. Fox, S. H. Ko, and S.Lim. mpi-
java: An object-oriented java interface to mpi. In Interna-
tional Workshop on Java for Parallel and Distributed Com-
puting, 1999.

[4] F. Breg, S. Diwan, J. Villacis, J. Balasubramanian, E. Ak-
man, and D. Gannon. Java rmi performance and object model
interoperability: Experiments with java/hpc++. In ACM 1998
Workshop on Java for High-Performance Network Comput-
ing, 1998.

[5] A. J. Ferrari. Jpvm: network parallel computing in java. In
ACM 1998 Workshop on Java for High-Performance Net-
work Computing, 1998.

[6] I. Foster and C. Kesselman. Globus: A metacomputing in-
frastructure toolkit. International Journal of Supercomputer
Applications and High Performance Computing, 11(2):115–
128, 1997.

[7] I. Ono, H. Fujiki, M. Ootsuka, N. Nakashima, N. Ono, and
S. Tate. Global optimization of protein 3-dimensional struc-
tures in nmr by a genetic algorithm. In Proc. 2002 Congress
on Evolutionary Computation, pages 303–308, 2002.

[8] A. Roy, I. Foster, W. Gropp, N. Karonis, V. Sander, and
B. Toonen. MPICH-GQ: Quality-of-Service for Message
Passing Programs, November 2000.

[9] Y. Sohda, H. Nakada, H. Ogawa, and S. Matsuoka. Imple-
mentation of portable software dsm in java. In Proc. of Jav-
aGrande 2001, pages 163–162, June 2001.

[10] Y. Tanaka, M. Hirano, M. Sato, H. Nakada, and S. Sekiguchi.
Performance evaluation of a firewall-compliant globus-based
wide-area cluster system. In 9th IEEE International Sympo-
sium on High Performance Distributed Computing (HPDC
2000), pages 121–128, 2000.

[11] Y. Tanaka, H. Nakada, S. Sekiguchi, T. Suzumura, and
S. Matsuoka. Ninf-g: A reference implementation of rpc-
based programming middleware for grid computing. Jour-
nal of Grid Computing, 1(1):41–51, 2003.

8

