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Background

• Issue
• The original method takes too long to 

render the image
• This work
• Instant rendering in any style
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Figure 2. Style transfer algorithm. First content and style features are extracted and stored. The style image !a is passed through the network

and its style representation Al on all layers included are computed and stored (left). The content image !p is passed through the network

and the content representation P l in one layer is stored (right). Then a random white noise image !x is passed through the network and its

style features Gl and content features F l are computed. On each layer included in the style representation, the element-wise mean squared

difference between Gl and Al is computed to give the style loss Lstyle (left). Also the mean squared difference between F l and P l is

computed to give the content loss Lcontent (right). The total loss Ltotal is then a linear combination between the content and the style loss.

Its derivative with respect to the pixel values can be computed using error back-propagation (middle). This gradient is used to iteratively

update the image !x until it simultaneously matches the style features of the style image !a and the content features of the content image !p
(middle, bottom).

layers of the network by constructing an image that matches
the style representation of a given input image (Fig 1, style
reconstructions). This is done by using gradient descent
from a white noise image to minimise the mean-squared
distance between the entries of the Gram matrices from the
original image and the Gram matrices of the image to be
generated [10, 25].

Let !a and !x be the original image and the image that is
generated, and Al and Gl their respective style representa-
tion in layer l. The contribution of layer l to the total loss is
then

El =
1

4N2
l M

2
l

∑

i,j

(

Gl
ij −Al

ij

)2
(4)

and the total style loss is

Lstyle(!a, !x) =
L
∑

l=0

wlEl, (5)

where wl are weighting factors of the contribution of each
layer to the total loss (see below for specific values of wl in

our results). The derivative of El with respect to the activa-
tions in layer l can be computed analytically:

∂El

∂F l
ij

=

{

1
N2

l
M2

l

(

(F l)T
(

Gl −Al
))

ji
if F l

ij > 0

0 if F l
ij < 0 .

(6)

The gradients of El with respect to the pixel values !x can
be readily computed using standard error back-propagation
(Fig 2, left).

2.3. Style transfer

To transfer the style of an artwork !a onto a photograph !p
we synthesise a new image that simultaneously matches the
content representation of !p and the style representation of !a
(Fig 2). Thus we jointly minimise the distance of the fea-
ture representations of a white noise image from the content
representation of the photograph in one layer and the style
representation of the painting defined on a number of layers
of the Convolutional Neural Network. The loss function we
minimise is
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Figure 2. Style transfer algorithm. First content and style features are extracted and stored. The style image !a is passed through the network

and its style representation Al on all layers included are computed and stored (left). The content image !p is passed through the network

and the content representation P l in one layer is stored (right). Then a random white noise image !x is passed through the network and its

style features Gl and content features F l are computed. On each layer included in the style representation, the element-wise mean squared

difference between Gl and Al is computed to give the style loss Lstyle (left). Also the mean squared difference between F l and P l is

computed to give the content loss Lcontent (right). The total loss Ltotal is then a linear combination between the content and the style loss.

Its derivative with respect to the pixel values can be computed using error back-propagation (middle). This gradient is used to iteratively

update the image !x until it simultaneously matches the style features of the style image !a and the content features of the content image !p
(middle, bottom).

layers of the network by constructing an image that matches
the style representation of a given input image (Fig 1, style
reconstructions). This is done by using gradient descent
from a white noise image to minimise the mean-squared
distance between the entries of the Gram matrices from the
original image and the Gram matrices of the image to be
generated [10, 25].

Let !a and !x be the original image and the image that is
generated, and Al and Gl their respective style representa-
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The gradients of El with respect to the pixel values !x can
be readily computed using standard error back-propagation
(Fig 2, left).

2.3. Style transfer

To transfer the style of an artwork !a onto a photograph !p
we synthesise a new image that simultaneously matches the
content representation of !p and the style representation of !a
(Fig 2). Thus we jointly minimise the distance of the fea-
ture representations of a white noise image from the content
representation of the photograph in one layer and the style
representation of the painting defined on a number of layers
of the Convolutional Neural Network. The loss function we
minimise is
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Figure 5. The effect of matching the content representation in

different layers of the network. Matching the content on layer

‘conv2 2’ preserves much of the fine structure of the original pho-

tograph and the synthesised image looks as if the texture of the

painting is simply blended over the photograph (middle). When

matching the content on layer ‘conv4 2’ the texture of the paint-

ing and the content of the photograph merge together such that the

content of the photograph is displayed in the style of the painting

(bottom). Both images were generated with the same choice of pa-

rameters (α/β = 1× 10
−3). The painting that served as the style

image is shown in the bottom left corner and is named Jesuiten III

by Lyonel Feininger, 1915.

matching the content features on layer ‘conv2 2’ and in the
other on layer ‘conv4 2’ (Fig 5). When matching the con-
tent on a lower layer of the network, the algorithm matches
much of the detailed pixel information in the photograph
and the generated image appears as if the texture of the art-
work is merely blended over the photograph (Fig 5, mid-
dle). In contrast, when matching the content features on a
higher layer of the network, detailed pixel information of
the photograph is not as strongly constraint and the texture
of the artwork and the content of the photograph are prop-
erly merged. That is, the fine structure of the image, for
example the edges and colour map, is altered such that it
agrees with the style of the artwork while displaying the
content of the photograph (Fig 5, bottom).

A B

C

Figure 6. Initialisation of the gradient descent. A Initialised from

the content image. B Initialised from the style image. C Four

samples of images initialised from different white noise images.

For all images the ratio α/β was equal to 1× 10
−3

3.3. Initialisation of gradient descent

We have initialised all images shown so far with white
noise. However, one could also initialise the image synthe-
sis with either the content image or the style image. We
explored these two alternatives (Fig 6 A, B): although they
bias the final image somewhat towards the spatial structure
of the initialisation, the different initialisations do not seem
to have a strong effect on the outcome of the synthesis pro-
cedure. It should be noted that only initialising with noise
allows to generate an arbitrary number of new images (Fig 6
C). Initialising with a fixed image always deterministically
leads to the same outcome (up to stochasticity in the gradi-
ent descent procedure).

3.4. Photorealistic style transfer

Thus far the focus of this paper was on artistic style trans-
fer. In general though, the algorithm can transfer the style
between arbitrary images. As an example we transfer the
style of a photograph of New York by night onto an image
of London in daytime (Fig 7). Although photorealism is
not fully preserved, the synthesised image resembles much
of the colours and lightning of the style image and to some
extent displays an image of London by night.
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Images are from [Gatys, et.al ‘16]
Style Image Content Image

• Image Style Transfer
• Input：Content Image and Style Image
• Output：Content rendered with the 

specified style



The original method [Gatys’ et.al, ‘16]

• Gradually refines image with SGD 
• Takes long time to render 
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Figure 2. Style transfer algorithm. First content and style features are extracted and stored. The style image !a is passed through the network

and its style representation Al on all layers included are computed and stored (left). The content image !p is passed through the network

and the content representation P l in one layer is stored (right). Then a random white noise image !x is passed through the network and its

style features Gl and content features F l are computed. On each layer included in the style representation, the element-wise mean squared

difference between Gl and Al is computed to give the style loss Lstyle (left). Also the mean squared difference between F l and P l is

computed to give the content loss Lcontent (right). The total loss Ltotal is then a linear combination between the content and the style loss.

Its derivative with respect to the pixel values can be computed using error back-propagation (middle). This gradient is used to iteratively

update the image !x until it simultaneously matches the style features of the style image !a and the content features of the content image !p
(middle, bottom).

layers of the network by constructing an image that matches
the style representation of a given input image (Fig 1, style
reconstructions). This is done by using gradient descent
from a white noise image to minimise the mean-squared
distance between the entries of the Gram matrices from the
original image and the Gram matrices of the image to be
generated [10, 25].

Let !a and !x be the original image and the image that is
generated, and Al and Gl their respective style representa-
tion in layer l. The contribution of layer l to the total loss is
then
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where wl are weighting factors of the contribution of each
layer to the total loss (see below for specific values of wl in

our results). The derivative of El with respect to the activa-
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The gradients of El with respect to the pixel values !x can
be readily computed using standard error back-propagation
(Fig 2, left).

2.3. Style transfer

To transfer the style of an artwork !a onto a photograph !p
we synthesise a new image that simultaneously matches the
content representation of !p and the style representation of !a
(Fig 2). Thus we jointly minimise the distance of the fea-
ture representations of a white noise image from the content
representation of the photograph in one layer and the style
representation of the painting defined on a number of layers
of the Convolutional Neural Network. The loss function we
minimise is
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Figure 2. Style transfer algorithm. First content and style features are extracted and stored. The style image !a is passed through the network

and its style representation Al on all layers included are computed and stored (left). The content image !p is passed through the network

and the content representation P l in one layer is stored (right). Then a random white noise image !x is passed through the network and its

style features Gl and content features F l are computed. On each layer included in the style representation, the element-wise mean squared

difference between Gl and Al is computed to give the style loss Lstyle (left). Also the mean squared difference between F l and P l is

computed to give the content loss Lcontent (right). The total loss Ltotal is then a linear combination between the content and the style loss.

Its derivative with respect to the pixel values can be computed using error back-propagation (middle). This gradient is used to iteratively

update the image !x until it simultaneously matches the style features of the style image !a and the content features of the content image !p
(middle, bottom).

layers of the network by constructing an image that matches
the style representation of a given input image (Fig 1, style
reconstructions). This is done by using gradient descent
from a white noise image to minimise the mean-squared
distance between the entries of the Gram matrices from the
original image and the Gram matrices of the image to be
generated [10, 25].

Let !a and !x be the original image and the image that is
generated, and Al and Gl their respective style representa-
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where wl are weighting factors of the contribution of each
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our results). The derivative of El with respect to the activa-
tions in layer l can be computed analytically:

∂El

∂F l
ij

=

{

1
N2

l
M2

l

(

(F l)T
(

Gl −Al
))

ji
if F l

ij > 0

0 if F l
ij < 0 .

(6)

The gradients of El with respect to the pixel values !x can
be readily computed using standard error back-propagation
(Fig 2, left).

2.3. Style transfer

To transfer the style of an artwork !a onto a photograph !p
we synthesise a new image that simultaneously matches the
content representation of !p and the style representation of !a
(Fig 2). Thus we jointly minimise the distance of the fea-
ture representations of a white noise image from the content
representation of the photograph in one layer and the style
representation of the painting defined on a number of layers
of the Convolutional Neural Network. The loss function we
minimise is
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Figure 2. Style transfer algorithm. First content and style features are extracted and stored. The style image !a is passed through the network

and its style representation Al on all layers included are computed and stored (left). The content image !p is passed through the network

and the content representation P l in one layer is stored (right). Then a random white noise image !x is passed through the network and its

style features Gl and content features F l are computed. On each layer included in the style representation, the element-wise mean squared

difference between Gl and Al is computed to give the style loss Lstyle (left). Also the mean squared difference between F l and P l is

computed to give the content loss Lcontent (right). The total loss Ltotal is then a linear combination between the content and the style loss.

Its derivative with respect to the pixel values can be computed using error back-propagation (middle). This gradient is used to iteratively

update the image !x until it simultaneously matches the style features of the style image !a and the content features of the content image !p
(middle, bottom).

layers of the network by constructing an image that matches
the style representation of a given input image (Fig 1, style
reconstructions). This is done by using gradient descent
from a white noise image to minimise the mean-squared
distance between the entries of the Gram matrices from the
original image and the Gram matrices of the image to be
generated [10, 25].

Let !a and !x be the original image and the image that is
generated, and Al and Gl their respective style representa-
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The gradients of El with respect to the pixel values !x can
be readily computed using standard error back-propagation
(Fig 2, left).

2.3. Style transfer

To transfer the style of an artwork !a onto a photograph !p
we synthesise a new image that simultaneously matches the
content representation of !p and the style representation of !a
(Fig 2). Thus we jointly minimise the distance of the fea-
ture representations of a white noise image from the content
representation of the photograph in one layer and the style
representation of the painting defined on a number of layers
of the Convolutional Neural Network. The loss function we
minimise is
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Conversion Network [Johnson ‘17]
• Train the conversion network, instead of each image

• Once the network has been trained, the conversion is instant
• The conversion network is style dependent 

• We have to train a network for each style.
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Figure 2. Style transfer algorithm. First content and style features are extracted and stored. The style image !a is passed through the network

and its style representation Al on all layers included are computed and stored (left). The content image !p is passed through the network

and the content representation P l in one layer is stored (right). Then a random white noise image !x is passed through the network and its

style features Gl and content features F l are computed. On each layer included in the style representation, the element-wise mean squared

difference between Gl and Al is computed to give the style loss Lstyle (left). Also the mean squared difference between F l and P l is

computed to give the content loss Lcontent (right). The total loss Ltotal is then a linear combination between the content and the style loss.

Its derivative with respect to the pixel values can be computed using error back-propagation (middle). This gradient is used to iteratively

update the image !x until it simultaneously matches the style features of the style image !a and the content features of the content image !p
(middle, bottom).

layers of the network by constructing an image that matches
the style representation of a given input image (Fig 1, style
reconstructions). This is done by using gradient descent
from a white noise image to minimise the mean-squared
distance between the entries of the Gram matrices from the
original image and the Gram matrices of the image to be
generated [10, 25].

Let !a and !x be the original image and the image that is
generated, and Al and Gl their respective style representa-
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layer to the total loss (see below for specific values of wl in
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The gradients of El with respect to the pixel values !x can
be readily computed using standard error back-propagation
(Fig 2, left).

2.3. Style transfer

To transfer the style of an artwork !a onto a photograph !p
we synthesise a new image that simultaneously matches the
content representation of !p and the style representation of !a
(Fig 2). Thus we jointly minimise the distance of the fea-
ture representations of a white noise image from the content
representation of the photograph in one layer and the style
representation of the painting defined on a number of layers
of the Convolutional Neural Network. The loss function we
minimise is
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Figure 2. Style transfer algorithm. First content and style features are extracted and stored. The style image !a is passed through the network

and its style representation Al on all layers included are computed and stored (left). The content image !p is passed through the network

and the content representation P l in one layer is stored (right). Then a random white noise image !x is passed through the network and its

style features Gl and content features F l are computed. On each layer included in the style representation, the element-wise mean squared

difference between Gl and Al is computed to give the style loss Lstyle (left). Also the mean squared difference between F l and P l is

computed to give the content loss Lcontent (right). The total loss Ltotal is then a linear combination between the content and the style loss.

Its derivative with respect to the pixel values can be computed using error back-propagation (middle). This gradient is used to iteratively

update the image !x until it simultaneously matches the style features of the style image !a and the content features of the content image !p
(middle, bottom).

layers of the network by constructing an image that matches
the style representation of a given input image (Fig 1, style
reconstructions). This is done by using gradient descent
from a white noise image to minimise the mean-squared
distance between the entries of the Gram matrices from the
original image and the Gram matrices of the image to be
generated [10, 25].

Let !a and !x be the original image and the image that is
generated, and Al and Gl their respective style representa-
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The gradients of El with respect to the pixel values !x can
be readily computed using standard error back-propagation
(Fig 2, left).

2.3. Style transfer

To transfer the style of an artwork !a onto a photograph !p
we synthesise a new image that simultaneously matches the
content representation of !p and the style representation of !a
(Fig 2). Thus we jointly minimise the distance of the fea-
ture representations of a white noise image from the content
representation of the photograph in one layer and the style
representation of the painting defined on a number of layers
of the Convolutional Neural Network. The loss function we
minimise is
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Figure 2. Style transfer algorithm. First content and style features are extracted and stored. The style image !a is passed through the network

and its style representation Al on all layers included are computed and stored (left). The content image !p is passed through the network

and the content representation P l in one layer is stored (right). Then a random white noise image !x is passed through the network and its

style features Gl and content features F l are computed. On each layer included in the style representation, the element-wise mean squared

difference between Gl and Al is computed to give the style loss Lstyle (left). Also the mean squared difference between F l and P l is

computed to give the content loss Lcontent (right). The total loss Ltotal is then a linear combination between the content and the style loss.

Its derivative with respect to the pixel values can be computed using error back-propagation (middle). This gradient is used to iteratively

update the image !x until it simultaneously matches the style features of the style image !a and the content features of the content image !p
(middle, bottom).

layers of the network by constructing an image that matches
the style representation of a given input image (Fig 1, style
reconstructions). This is done by using gradient descent
from a white noise image to minimise the mean-squared
distance between the entries of the Gram matrices from the
original image and the Gram matrices of the image to be
generated [10, 25].

Let !a and !x be the original image and the image that is
generated, and Al and Gl their respective style representa-
tion in layer l. The contribution of layer l to the total loss is
then

El =
1

4N2
l M

2
l

∑

i,j

(

Gl
ij −Al

ij

)2
(4)

and the total style loss is

Lstyle(!a, !x) =
L
∑

l=0

wlEl, (5)

where wl are weighting factors of the contribution of each
layer to the total loss (see below for specific values of wl in

our results). The derivative of El with respect to the activa-
tions in layer l can be computed analytically:

∂El

∂F l
ij

=

{

1
N2

l
M2

l

(

(F l)T
(

Gl −Al
))

ji
if F l

ij > 0

0 if F l
ij < 0 .

(6)

The gradients of El with respect to the pixel values !x can
be readily computed using standard error back-propagation
(Fig 2, left).

2.3. Style transfer

To transfer the style of an artwork !a onto a photograph !p
we synthesise a new image that simultaneously matches the
content representation of !p and the style representation of !a
(Fig 2). Thus we jointly minimise the distance of the fea-
ture representations of a white noise image from the content
representation of the photograph in one layer and the style
representation of the painting defined on a number of layers
of the Convolutional Neural Network. The loss function we
minimise is
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Motivation and Goal

• Existing methods takes too long time
• Gatys, et al.: Optimize the image itself

• For each style and each content.

• Johnson, et al.: Optimize style converters for each style
• For each style, can reuse the converter network.
• For any new style, need to train the converter.

à Enable instant style transfer for any style and content

5



Wasserstein Autoencoder 

• A method for Representation Learning

• Reconstruct X’ from Latent Representation Z
• Train the encoder and the decoder simultaneously

• Difference from ‘Classical Autoencoder’
• Train the networks so that the latent variables will have 

normal distribution with μ=0, σ=1
• Enforce the latent variables have ‘meaningful’ distribution
• WAE uses Wasserstein distance

• C.f: VAE uses KL divergence
6
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Proposed Method
• WAE enables to represent images with latent variables
• If we can disentangle latent variables for style and 

content, we can render any image with any style.
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Proposed Network

• Training Time:
Input one image and minimize 
the Wasserstein loss and the 
image loss (difference between 
input and output)

• Style matrix is calculated with 
pretrained VGG network

8
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Proposed Network
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• Transfer:
Input two images, style and 
content, concatenate the latent 
representation, and decode it 
using the decoder network.



Disentanglement with regularization

• Latent variable for content will contain some style 
information
• For better disentanglement, we have to ‘squeeze out’ the 

style information from the content latent variable

• Introduce regularization to latent variables
• Enforce the variance of variables close to 1.
• Effectively, minimize the number of variables that are 

actually used.
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Experimental Settings
• Dataset Diversity
• CelebA only
• CelebA＋Anime-Face＋Imagenet

• Control the content-variable contribution
• Changing # content latent variable
• 512,256,128,64,32

• Latent variable Regularization
• No Regularization
• Style only, Content Only
• Both
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Dataset

• CelebA
• Cropped centering the face: 193,800

• Anime-Face-Dataset
• Resized: 14,490

• ImageNet
• Center Cropped: 196,371

• Style Images

12



Reconstruction
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Reconstruction
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Style Transferred
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Content
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Contribution of
Regularization

• Difference between style matrix of 
the style image and generated 
image
• Smaller the better disentanglement.  

• Regularization on
• None
• Content
• Style
• Content and Style Both

‘Content only’ shows the best 
disentanglement

None Content Style Both



Contribution of Regularization

Content

#Zc=512
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#Zc=128

#Zc=64
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Style

NoSP Content
Only

Style
Only Both NoSP Content

Only
Style
Only Both NoSP Content
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Style
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Conclusion
• Summary
• Proposed WAE based Style transfer
• Instant Style transfer with arbitrary 

style and content
• Disentanglement with regularization
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• Future Work
• Strong Disentanglement
• Improve Image Decode Network

• GAN
• PixelCNN
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