

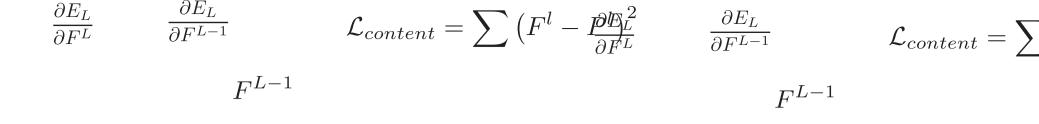
2021 ASIAN CONFERENCE ON INNOVATION IN TECHNOLOGY (ASIANCON 2021)

One-shot style transfer using Wasserstein Autoencoder

Paper ID: 1014

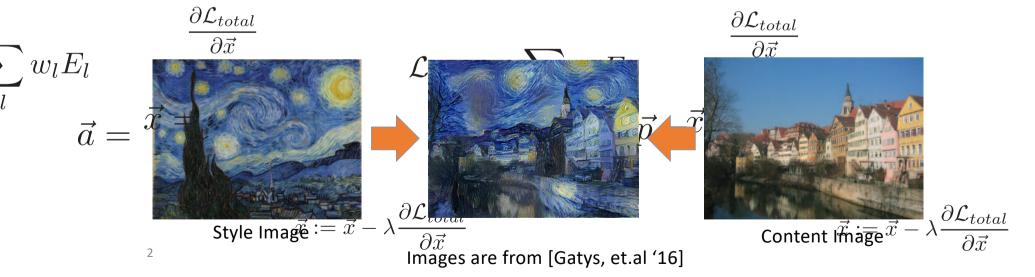
Hidemoto Nakada, Hideki Asoh

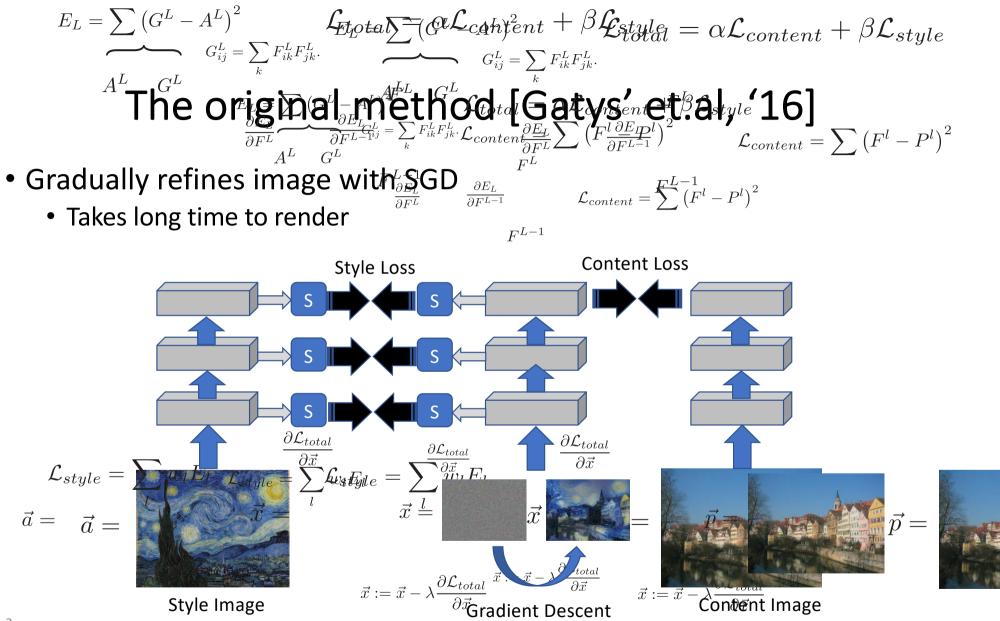
AIRC, AIST



Background

- Image Style Transfer
 - Input : Content Image and Style Image
 - Output : Content rendered with the specified style
- Issue
 - The original method takes too long to render the image
- This work
 - Instant rendering in any style

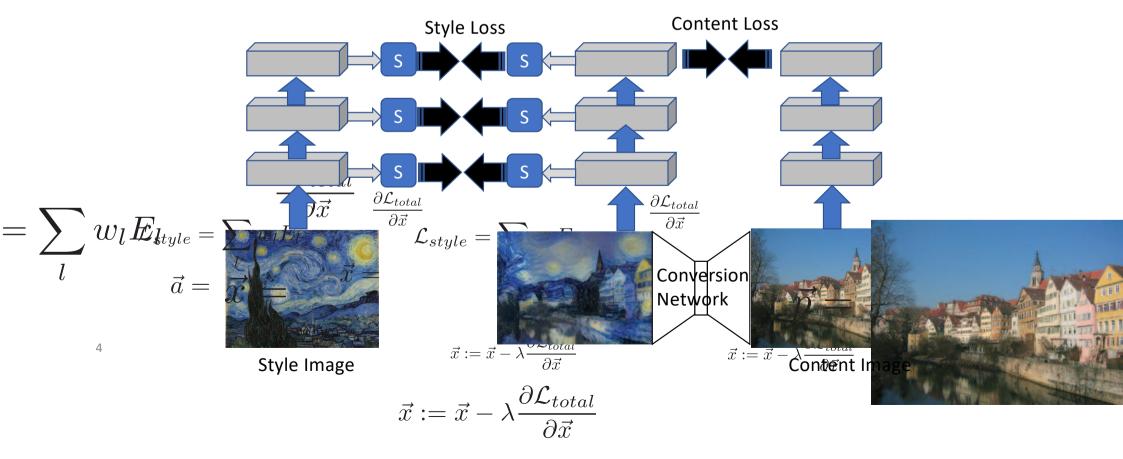




$$\frac{\partial E_L}{\partial F^L} \qquad \frac{\partial E_L}{\partial F^{L-1}} \qquad \qquad \mathcal{L}_{content} = \sum \left(F^l - P^l \right)^2$$

 $\mathcal{L}_{content} = \sum \left(F^l - P^l \right)^2$

- Train the conversion $\mathcal{D}_{F}^{DE_{L}}$ instead $\mathcal{D}_{F}^{E_{L}}$ $\mathcal{D}_{F}^{DE_{L}}$
 - Once the network has been trained, the conversion is instant ${}_{F^{L-1}}$
 - The conversion network is style dependent
 - We have to train a network for each style.



Motivation and Goal

- Existing methods takes too long time
 - Gatys, et al.: Optimize the image itself
 - For each style and each content.
 - Johnson, et al.: Optimize style converters for each style
 - For each style, can reuse the converter network.
 - For any new style, need to train the converter.

\rightarrow Enable instant style transfer for any style and content

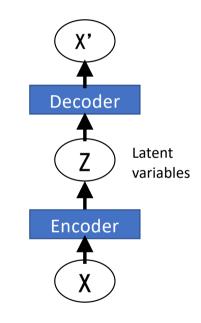
Wasserstein Autoencoder

• A method for Representation Learning

content

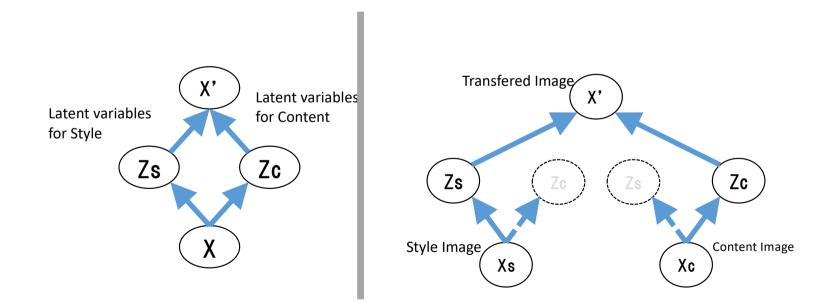
6

- Reconstruct X' from Latent Representation Z
 - Train the encoder and the decoder simultaneously
- Difference from 'Classical Autoencoder'
 - Train the networks so that the latent variables will have normal distribution with μ =0, σ =1
 - Enforce the latent variables have 'meaningful' distribution
 - WAE uses Wasserstein distance
 - C.f: VAE uses KL divergence



Proposed Method

- WAE enables to represent images with latent variables
- If we can disentangle latent variables for style and content, we can render any image with any style.

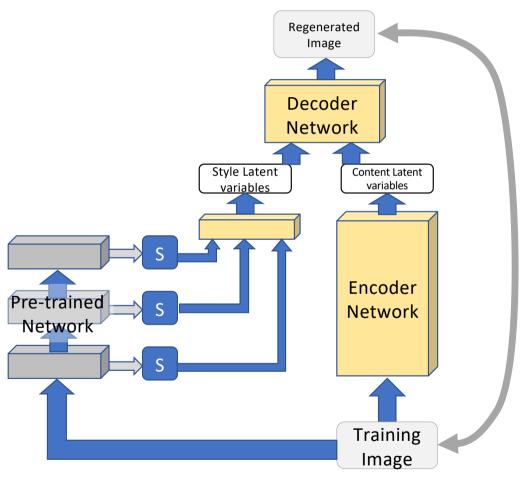


Proposed Network

• Training Time:

Input one image and minimize the Wasserstein loss and the image loss (difference between input and output)

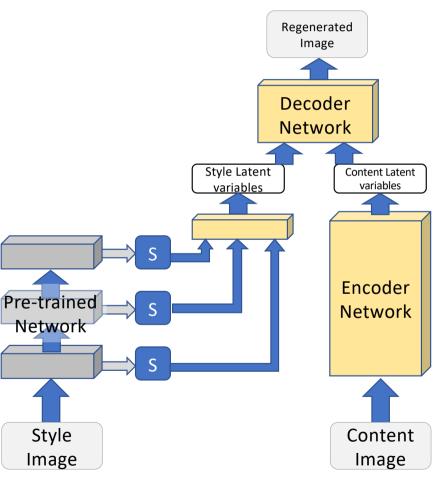
 Style matrix is calculated with pretrained VGG network



Proposed Network

• Transfer:

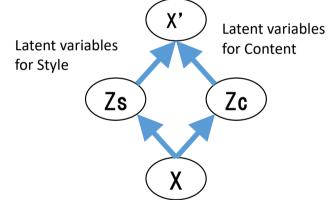
Input two images, style and content, concatenate the latent representation, and decode it using the decoder network.



Disentanglement with regularization

- Latent variable for content will contain some style information
 - For better disentanglement, we have to 'squeeze out' the style information from the content latent variable
- Introduce regularization to latent variables
 - Enforce the variance of variables close to 1.
 - Effectively, minimize the number of variables that are actually used.

$$\frac{\lambda}{N} \sum_{n=1}^{N} \sum_{i=1}^{d_z} \|\log(\sigma_i^2(x_n))\|^1$$



Experimental Settings

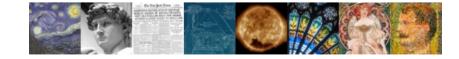
- Dataset Diversity
 - CelebA only
 - CelebA + Anime-Face + Imagenet
- Control the content-variable contribution
 - Changing # content latent variable
 - 512,256,128,64,32
- Latent variable Regularization
 - No Regularization
 - Style only, Content Only
 - Both

Dataset

- CelebA
 - Cropped centering the face: 193,800

- Anime-Face-Dataset
 - Resized: 14,490

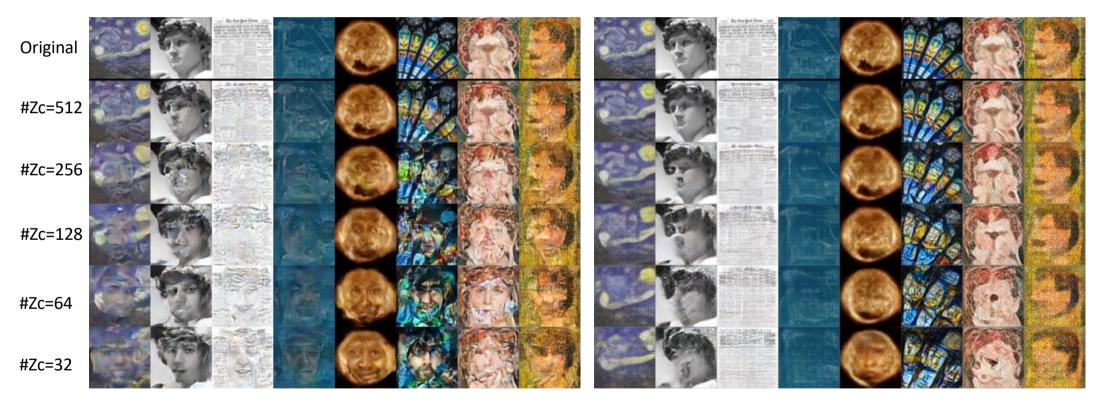
- ImageNet
 - Center Cropped: 196,371
- Style Images



Reconstruction

Trained /w Celeb A only

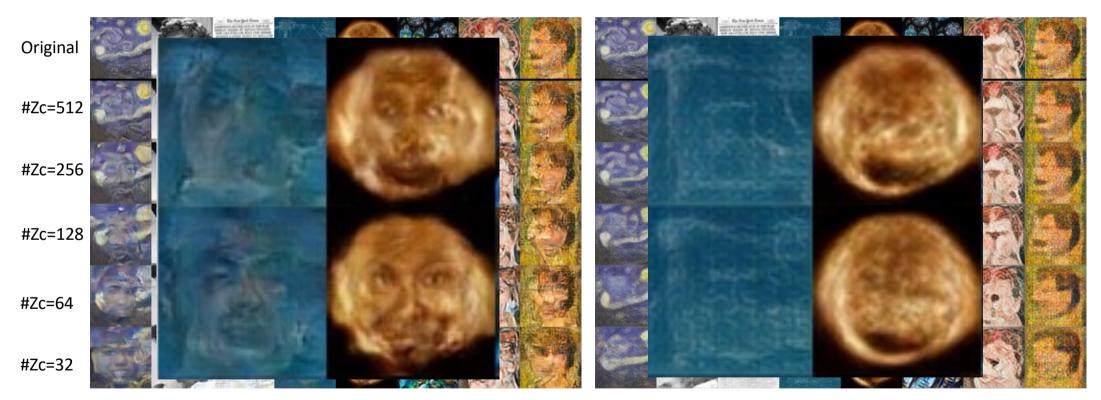
Trained /w Celeb A + Anime + ImageNet



Reconstruction

Trained /w Celeb A only

Trained /w Celeb A + Anime + ImageNet

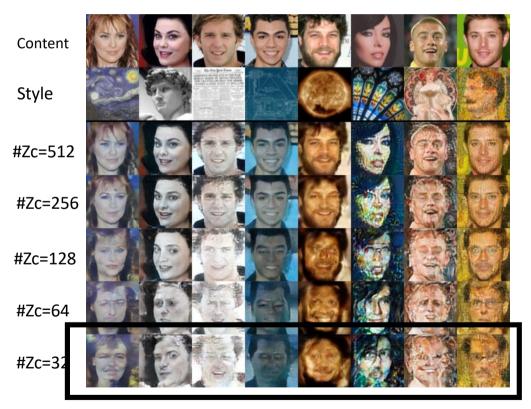


Face Artifact

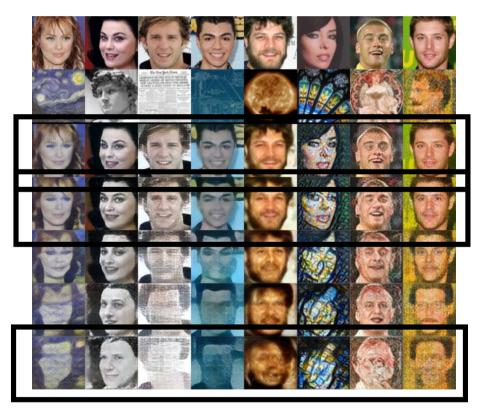
14

Style Transferred

Trained /w Celeb A only



Trained /w Celeb A + Anime + ImageNet

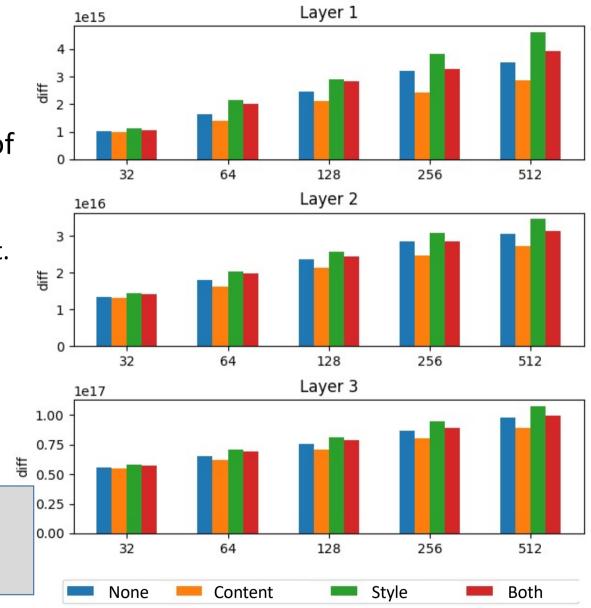


15

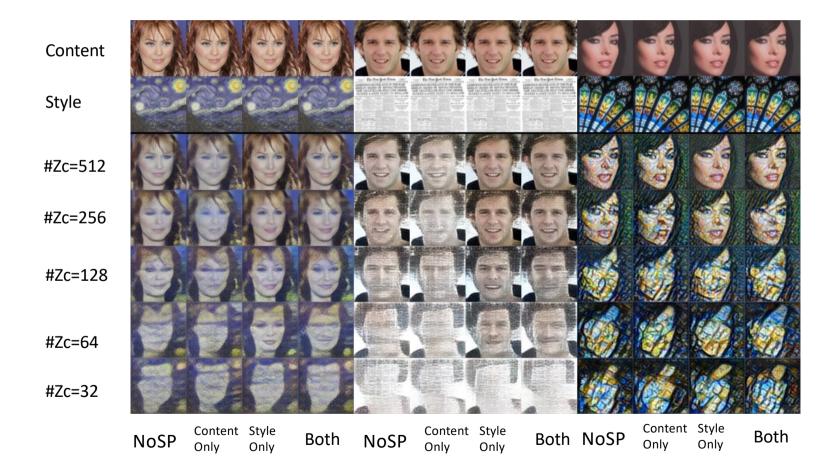
Contribution of Regularization

- Difference between style matrix of the style image and generated image
 - Smaller the better disentanglement.
- Regularization on
 - None
 - Content
 - Style
 - Content and Style Both

'Content only' shows the best disentanglement



Contribution of Regularization



Conclusion

Summary

18

- Proposed WAE based Style transfer
- Instant Style transfer with arbitrary style and content
- Disentanglement with regularization

- Future Work
 - Strong Disentanglement
 - Improve Image Decode Network
 - GAN
 - PixelCNN

Acknowledgement

We would like to show our deep gratitude to **Tatsuhiko Inoue**, who helped us on implementation.

This paper is based on results obtained from a project commissioned by the New Energy and Industrial Technology Development Organization (NEDO).